码迷,mamicode.com
首页 > 其他好文 > 详细

k Sum | & ||

时间:2016-07-05 06:19:13      阅读:232      评论:0      收藏:0      [点我收藏+]

标签:

k Sum

Given n distinct positive integers, integer k (k <= n) and a number target.

Find k numbers where sum is target. Calculate how many solutions there are?

Example

Given [1,2,3,4], k = 2, target = 5.

There are 2 solutions: [1,4] and [2,3].

Return 2.

分析:

第一种方法用递归,但是超时了。

 1 public class Solution {
 2     /**
 3      * @param A: an integer array.
 4      * @param k: a positive integer (k <= length(A))
 5      * @param target: a integer
 6      * @return an integer
 7      */
 8     public int kSum(int A[], int k, int target) {
 9         // write your code here
10         
11         int[] total = new int[1];
12         helper(A, 0, k, 0, target, 0, total);
13         return total[0];
14     }
15     
16     public void helper(int[] A, int index, int k, int count, int target, int total, int[] kk) {
17         if (count > k || index >= A.length || total > target) return;
18         
19         total += A[index];
20         count++;
21         
22         if (count == k && total == target) {
23             kk[0]++;
24         }
25         
26         helper(A, index + 1, k, count, target, total, kk);
27         total -= A[index];
28         count--;
29         helper(A, index + 1, k, count, target, total, kk);
30     }
31 }

很明显,the preferred approach is DP. 但是如何做呢?我做不出来。 :-( 还是直接copy paste其它牛人的解答吧。

技术分享

 

 
 F[0][0][0]表示在一个空集中找出0个数,target为0,则有1个解,就是什么也不挑嘛! 其实应该这样写,也就是说,找0个数,目标为0,则一定是有1个解:

if (j == 0 && t == 0) {
  // select 0 number from i to the target: 0
  D[i][j][t] = 1;
}

1. 状态表达式:

D[i][j][t] = D[i - 1][j][t];
if (t - A[i - 1] >= 0) {
D[i][j][t] += D[i - 1][j - 1][t - A[i - 1]];
}

意思就是:

(1)我们可以把当前A[i - 1]这个值包括进来,所以需要加上D[i - 1][j - 1][t - A[i - 1]](前提是t - A[i - 1]要大于0)

(2)我们可以不选择A[i - 1]这个值,这种情况就是D[i - 1][j][t],也就是说直接在前i-1个值里选择一些值加到target.

 

 1 public class Solution {
 2     /**
 3      * @param A: an integer array.
 4      * @param k: a positive integer (k <= length(A))
 5      * @param target: a integer
 6      * @return an integer
 7      */
 8     public int  kSum(int A[], int k, int target) {
 9 
10         if (target < 0) {
11             return 0;
12         }
13         
14         int len = A.length;
15         
16         int[][][] D = new int[len + 1][k + 1][target + 1];
17         
18         for (int i = 0; i <= len; i++) {
19             for (int j = 0; j <= k; j++) {
20                 for (int t = 0; t <= target; t++) {
21                     if (j == 0 && t == 0) {
22                         // select 0 number from i to the target: 0
23                         D[i][j][t] = 1;
24                     } else if (!(i == 0 || j == 0 || t == 0)) {
25                         D[i][j][t] = D[i - 1][j][t];
26                         if (t - A[i - 1] >= 0) {
27                             D[i][j][t] += D[i - 1][j - 1][t - A[i - 1]];
28                         }
29                     }
30                 }
31             }
32         }
33         return D[len][k][target];
34     }
35 }

k Sum II

Given n unique integers, number k (1<=k<=n) and target.

Find all possible k integers where their sum is target.

Example

Given [1,2,3,4], k = 2, target = 5. Return:

[
  [1,4],
  [2,3]
]

 1 public class Solution {
 2     /**
 3      * @param A: an integer array.
 4      * @param k: a positive integer (k <= length(A))
 5      * @param target: a integer
 6      * @return a list of lists of integer 
 7      */ 
 8     public ArrayList<ArrayList<Integer>> kSumII(int[] A, int k, int target) {
 9         // write your code here
10         ArrayList<ArrayList<Integer>> allList = new ArrayList<ArrayList<Integer>>();
11         ArrayList<Integer> list = new ArrayList<Integer>();
12         if (A == null || A.length == 0 || k == 0) return allList;
13         
14         helper(allList, list, 0, A, k, 0, target, 0);
15         return allList;
16     }
17     
18     public void helper(ArrayList<ArrayList<Integer>> allList, ArrayList<Integer> list, int index, int[] A, int k, int count, int target, int total) {
19         if (count > k || index >= A.length || total > target) return;
20         
21         list.add(A[index]);
22         total += A[index];
23         count++;
24         
25         if (count == k && total == target) {
26             allList.add(new ArrayList<Integer>(list));
27         }
28         
29         helper(allList, list, index + 1, A, k, count, target, total);
30         total -= list.get(list.size() - 1);
31         list.remove(list.size() - 1);
32         count--;
33         helper(allList, list, index + 1, A, k, count, target, total);
34     }
35 }

Reference:

http://www.cnblogs.com/yuzhangcmu/p/4279676.html 

k Sum | & ||

标签:

原文地址:http://www.cnblogs.com/beiyeqingteng/p/5642185.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!