题目大意是,n只猫,有k个动作让它们去完成,并且重复m次,动作主要有三类gi,ei,s i j,分别代表第i只猫获得一个花生,第i只猫吃掉它自己所有的花生,第i只和第j只猫交换彼此的花生。k,n不超过100,m不超过1000,000,000,计算出最后每只猫还剩下多少个花生。
我们假设一个n维向量P,每个分量的值代表这n只猫所拥有的花生数,那么对于gi操作其实就是在第i维分量上加上1;对于ei,那就是在第i维分量上乘以0,说到这里,有木有感觉这很像3D坐标转化中的平移矩阵和缩放矩阵?没错,就是这个意思,现在知道g i 和 e i对应的操作,那么s i j 呢,第i维分量就是第i维分量乘以0加上第j维分量乘以1,第j维分量就是第i行分量乘以1加上第j行分量乘以0。
由于要支持平移操作,我们需要对向量再增加一维,并且一直保持1,转移矩阵也是 (n + 1) * (n + 1),初始时该矩阵为单位矩阵,我们将每一个操作转化成矩阵,再让向量P与其相乘,由于满足结合律,我们可以先让这k个矩阵先相称,然后对结果作m次幂,因为m很大,用快速幂来优化就行,但是到这里直接提交代码的话会TLE,为什么呢。。。还是矩阵相乘复杂度过高了,我们发现这个矩阵大多数元素是0,所以在相乘的时候可以略去很多不需要的乘法,具体优化看代码吧。
#include <stdio.h> #include <vector> #include <math.h> #include <string.h> #include <string> #include <iostream> #include <queue> #include <list> #include <algorithm> #include <stack> #include <map> #include <time.h> using namespace std; #define MAXSIZE 101 typedef long long MYTYPE; MYTYPE States[MAXSIZE][MAXSIZE]; void VectorMulMatrix(MYTYPE v[MAXSIZE], MYTYPE a[][MAXSIZE], MYTYPE res[MAXSIZE]) { memset(res, 0, sizeof(MYTYPE)* MAXSIZE); for (int i = 0; i < MAXSIZE; i++) { for (int j = 0; j < MAXSIZE;j++) { res[i] += (v[j] * a[j][i]); } } } void Product(MYTYPE a[][MAXSIZE], MYTYPE b[][MAXSIZE], MYTYPE res[][MAXSIZE]) { memset(res, 0, sizeof(MYTYPE)* MAXSIZE * MAXSIZE); for (int i = 0; i < MAXSIZE; i++) { for (int j = 0; j < MAXSIZE; j++) { if (a[i][j]) { for (int k = 0; k < MAXSIZE; k++) { res[i][k] += (a[i][j] * b[j][k]); } } } } } void QProduct(MYTYPE p[][MAXSIZE], MYTYPE res[][MAXSIZE], int n) { memset(res, 0, sizeof(MYTYPE)* MAXSIZE * MAXSIZE); MYTYPE tmp[2][MAXSIZE][MAXSIZE]; MYTYPE tmpres[MAXSIZE][MAXSIZE]; memcpy(tmp[0], p, sizeof(MYTYPE)* MAXSIZE * MAXSIZE); int i = 0; for (int k = 0; k < MAXSIZE; k++) { res[k][k] = 1; } while (n) { if (n & 1) { memcpy(tmpres, res, sizeof(MYTYPE)* MAXSIZE * MAXSIZE); Product(tmpres, tmp[i & 1], res); } Product(tmp[i & 1], tmp[i & 1], tmp[(i + 1) & 1]); i++; n = n >> 1; } } void IdentityMatrix(MYTYPE a[][MAXSIZE]) { memset(a, 0, sizeof(MYTYPE)* MAXSIZE * MAXSIZE); for (int i = 0; i < MAXSIZE; i++) { a[i][i] = 1; } } int main() { #ifdef _DEBUG freopen("e:\\in.txt", "r", stdin); #endif int n, m, k; MYTYPE CurState[MAXSIZE][MAXSIZE]; MYTYPE tmpState[MAXSIZE][MAXSIZE]; MYTYPE tmpRes[MAXSIZE]; MYTYPE cur[MAXSIZE]; while (scanf("%d %d %d\n", &n, &m, &k) != EOF) { if (n == 0 && m == 0 && k == 0) { break; } memset(cur, 0, sizeof(MYTYPE)* MAXSIZE); memset(tmpRes, 0, sizeof(MYTYPE)* MAXSIZE); cur[MAXSIZE - 1] = 1; char op; IdentityMatrix(States); for (int i = 0; i < k; i++) { IdentityMatrix(CurState); scanf("%c", &op); if (op == 'g') { int value; scanf("%d\n", &value); CurState[MAXSIZE - 1][value - 1] = 1; } else if (op == 'e') { int value; scanf("%d\n", &value); CurState[value - 1][value - 1] = 0; CurState[MAXSIZE - 1][value - 1] = 0; } else { int value1, value2; scanf("%d %d\n", &value1, &value2); CurState[value1 - 1][value1 - 1] = 0; CurState[value2 - 1][value2 - 1] = 0; CurState[value2 - 1][value1 - 1] = 1; CurState[value1 - 1][value2 - 1] = 1; } Product(States, CurState, tmpState); memcpy(States, tmpState, sizeof(MYTYPE)* MAXSIZE * MAXSIZE); } if (m != 0) { QProduct(States, tmpState, m); VectorMulMatrix(cur, tmpState, tmpRes); } for (int i = 0; i < n; i++) { printf("%I64d ", tmpRes[i]); } printf("\n"); } return 0; }
POJ3735 Training little cats DP,矩阵快速幂,稀疏矩阵优化,布布扣,bubuko.com
POJ3735 Training little cats DP,矩阵快速幂,稀疏矩阵优化
原文地址:http://blog.csdn.net/u011363774/article/details/38390127