码迷,mamicode.com
首页 > 其他好文 > 详细

《机器学习》周志华 习题答案9.4

时间:2016-07-06 23:21:56      阅读:345      评论:0      收藏:0      [点我收藏+]

标签:

原题采用Kmeans方法对西瓜数据集进行聚类。我花了一些时间居然没找到西瓜数据集4.0在哪里,于是直接采用sklearn给的例子来分析一遍,更能说明Kmeans的效果。

#!/usr/bin/python
# -*- coding:utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

file1 = open(c:\quant\watermelon.csv,r)
data = [line.strip(\n).split(,) for line in file1]
data = np.array(data)
#X = [[float(raw[-7]),float(raw[-6]),float(raw[-5]),float(raw[-4]),float(raw[-3]), float(raw[-2])] for raw in data[1:,1:-1]]

X = [[float(raw[-3]), float(raw[-2])] for raw in data[1:]]
y = [1 if raw[-1]==1 else 0 for raw in data[1:]]
X = np.array(X)
y = np.array(y)

print(__doc__)

from time import time
import numpy as np
import matplotlib.pyplot as plt

from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale

np.random.seed(42)

digits = load_digits()
data = scale(digits.data)
n_samples, n_features = data.shape
n_digits = len(np.unique(digits.target))
labels = digits.target

sample_size = 300

print("n_digits: %d, \t n_samples %d, \t n_features %d"
      % (n_digits, n_samples, n_features))
#一共十个不同的类

print(79 * _)
print(% 9s % init
          time  inertia    homo   compl  v-meas     ARI AMI  silhouette)


def bench_k_means(estimator, name, data):
    t0 = time()
    estimator.fit(data)
    print(% 9s   %.2fs    %i   %.3f   %.3f   %.3f   %.3f   %.3f    %.3f
          % (name, (time() - t0), estimator.inertia_,
             metrics.homogeneity_score(labels, estimator.labels_),
             metrics.completeness_score(labels, estimator.labels_),
             metrics.v_measure_score(labels, estimator.labels_),
             metrics.adjusted_rand_score(labels, estimator.labels_),
             metrics.adjusted_mutual_info_score(labels,  estimator.labels_),
             metrics.silhouette_score(data, estimator.labels_,
                                      metric=euclidean,
                                      sample_size=sample_size)))
#Homogeneity 和 completeness 表示簇的均一性和完整性。V值是他们的调和平均,值越大,说明效果越好。
bench_k_means(KMeans(init
=k-means++, n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init=random, n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * _) ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init=k-means++, n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation=nearest, extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect=auto, origin=lower) plt.plot(reduced_data[:, 0], reduced_data[:, 1], k., markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker=x, s=169, linewidths=3, color=w, zorder=10) plt.title(K-means clustering on the digits dataset (PCA-reduced data)\n Centroids are marked with white cross) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()

运行文本结果:

n_digits: 10,      n_samples 1797,      n_features 64
_______________________________________________________________________________
init    time  inertia    homo   compl  v-meas     ARI AMI  silhouette
k-means++   0.21s    69432   0.602   0.650   0.625   0.465   0.598    0.146
   random   0.20s    69694   0.669   0.710   0.689   0.553   0.666    0.147
PCA-based   0.02s    71820   0.673   0.715   0.693   0.567   0.670    0.150

我们可以看到降维处理后运行时间缩短,而且V值还略高于以上两种方法。

图片结果:

技术分享

《机器学习》周志华 习题答案9.4

标签:

原文地址:http://www.cnblogs.com/zhusleep/p/5648244.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!