标签:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
思路:
关于存储空间的优化,可以看姐妹题:Leetcode 62. Unique Paths
1. 如果地图的左上角定格是障碍,则输出为0;
2. 对于第0行的第j(0<j<n)个,cur[0]=1:
2.1 obstacleGrid[0][j-1]==1(等价于cur[j-1]==0),则cur[j]=0
2.2 obstacleGrid[0][j-1]==0(等价于cur[j-1]==1),则cur[j]=1-obstacleGrid[0][j]
3. 对于第i行(0<i<m):
3.1 对于第0个:
3.1.1 obstacleGrid[i-1][0]==1,cur[0]=0
3.1.2 obstacleGrid[i-1][0]==0,cur[0]=1
3.2 对于第j(0<j<n)个:
3.2.1 obstacleGrid[i][j]==1,cur[j]=0
3.2.2 obstacleGrid[i][j]==0,cur[j]=cur[j-1]+cur[j]
代码:
1 class Solution { 2 public: 3 int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) { 4 int m=obstacleGrid.size(); 5 int n=obstacleGrid[0].size(); 6 vector<int> cur(n); 7 int i,j; 8 if(obstacleGrid[0][0]){ 9 return 0; 10 } 11 cur[0]=1; 12 for(j=1;j<n;j++){ 13 cur[j]=cur[j-1]?1-obstacleGrid[0][j]:0; 14 } 15 for(i=1;i<m;i++){ 16 cur[0]=cur[0]?1-obstacleGrid[i][0]:0; 17 for(j=1;j<n;j++){ 18 cur[j]=obstacleGrid[i][j]?0:cur[j]+cur[j-1]; 19 } 20 } 21 return cur[n-1]; 22 } 23 };
标签:
原文地址:http://www.cnblogs.com/Deribs4/p/5651709.html