标签:
1. Preorder Tree Traversal
1 // Solution 1. With Stack 2 // Time Complexity : O(n) 3 // Space Complexity: O(h) ~ O(log n) 4 public class Solution { 5 public List<Integer> preorderTraversal(TreeNode root) { 6 ArrayList<Integer> list = new ArrayList<Integer>(); 7 if (root == null) return list; 8 9 Stack<TreeNode> stack = new Stack<TreeNode>(); 10 stack.push(root); 11 TreeNode cur = null; 12 while (!stack.isEmpty()) { 13 cur = stack.pop(); 14 list.add(cur.val); // Do manipulation here 15 if (cur.right != null) stack.push(cur.right); 16 if (cur.left != null) stack.push(cur.left); 17 } 18 19 return list; 20 } 21 }
1 // Solution 2. Morris Traversal 2 // Time Complexity : O(n) 3 // Space Complexity : O(1) 4 public class Solution { 5 public List<Integer> preorderTraversal(TreeNode root) { 6 List<Integer> list = new ArrayList<Integer>(); 7 8 TreeNode cur = root; 9 TreeNode pre = null; 10 while (cur != null) { 11 if (cur.left != null) { 12 pre = cur.left; 13 while (pre.right != null && pre.right != cur) { // link / unlink 14 pre = pre.right; 15 } 16 if (pre.right == null) { 17 list.add(cur.val); 18 pre.right = cur; 19 cur = cur.left; 20 } else { 21 pre.right = null; 22 cur = cur.right; 23 } 24 } else { 25 list.add(cur.val); 26 cur = cur.right; 27 } 28 } 29 30 return list; 31 } 32 }
2. Inorder Tree Traversal
1 // Solution 1. With Stack 2 // Time Complexity : O(n) 3 // Space Complexity: O(h) ~ O(log n) 4 public class Solution { 5 public List<Integer> inorderTraversal(TreeNode root) { 6 ArrayList<Integer> list = new ArrayList<Integer>(); 7 if (root == null) return list; 8 9 TreeNode cur = root; 10 Stack<TreeNode> stack = new Stack<TreeNode>(); 11 while (cur != null || !stack.isEmpty()) { 12 if (cur != null) { 13 stack.push(cur); 14 cur = cur.left; 15 } else { 16 cur = stack.pop(); 17 list.add(cur.val); // Do manipulation here 18 cur = cur.right; 19 } 20 } 21 22 return list; 23 } 24 }
1 // Solution 2. Morris Traversal 2 // Time Complexity : O(n) 3 // Space Complexity : O(1) 4 public class Solution { 5 public List<Integer> inorderTraversal(TreeNode root) { 6 List<Integer> list = new ArrayList<Integer>(); 7 8 TreeNode cur = root; 9 TreeNode pre = null; 10 while (cur != null) { 11 if (cur.left != null) { 12 pre = cur.left; 13 while (pre.right != null && pre.right != cur) { 14 pre = pre.right; 15 } 16 if (pre.right == null) { 17 pre.right = cur; 18 cur = cur.left; 19 } else { 20 pre.right = null; 21 list.add(cur.val); 22 cur = cur.right; 23 } 24 } else { 25 list.add(cur.val); 26 cur = cur.right; 27 } 28 } 29 return list; 30 } 31 }
3. Postorder Tree Traversal
1 // Solution 1. With Stack 2 // Time Complexity : O(n) 3 // Space Complexity: O(h) ~ O(log n) 4 public class Solution { 5 public List<Integer> postorderTraversal(TreeNode root) { 6 ArrayList<Integer> list = new ArrayList<Integer>(); 7 if (root == null) return list; 8 9 TreeNode pre = null; 10 TreeNode cur = root; 11 Stack<TreeNode> stack = new Stack<TreeNode>(); 12 while (cur != null || !stack.isEmpty()) { 13 if (cur != null) { 14 stack.push(cur); 15 cur = cur.left; 16 } else { 17 cur = stack.pop(); 18 if (cur.right == null || pre == cur.right) { // won‘t put back 19 list.add(cur.val); // Do manipulation here 20 pre = cur; 21 cur = null; 22 } else { 23 stack.push(cur); 24 cur = cur.right; 25 } 26 } 27 } 28 29 return list; 30 } 31 }
1 // Solution 2. Morris Traversal 2 // Time Complexity : O(n) 3 // Space Complexity : O(1) 4 public class Solution { 5 public List<Integer> postorderTraversal(TreeNode root) { 6 List<Integer> list = new ArrayList<Integer>(); 7 8 TreeNode dump = new TreeNode(-1); 9 dump.left = root; 10 11 TreeNode cur = dump; 12 TreeNode pre = null; 13 while (cur != null) { 14 if (cur.left != null) { 15 pre = cur.left; 16 while (pre.right != null && pre.right != cur) { 17 pre = pre.right; 18 } 19 if (pre.right == null) { 20 pre.right = cur; 21 cur = cur.left; 22 } else { 23 List<Integer> rev = new ArrayList<Integer>(); 24 TreeNode tmp = cur.left; 25 while (tmp != cur) { 26 rev.add(tmp.val); 27 tmp = tmp.right; 28 } 29 if (!rev.isEmpty()) { 30 Collections.reverse(rev); // Collections.reverse return void 31 list.addAll(rev); 32 } 33 pre.right = null; 34 cur = cur.right; 35 } 36 } else { 37 cur = cur.right; 38 } 39 } 40 return list; 41 } 42 }
标签:
原文地址:http://www.cnblogs.com/joycelee/p/5649725.html