一篇不错的讲解:http://www.cnblogs.com/shenshuyang/archive/2012/07/14/2591859.html
代码如下:(树状数组+离散化)
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int maxn=500017; int n; int aa[maxn]; //离散化后的数组 int c[maxn]; //树状数组 struct Node { int v; int order; }in[maxn]; int Lowbit(int x) //2^k { return x&(-x); } void update(int i, int x)//i点增量为x { while(i <= n) { c[i] += x; i += Lowbit(i); } } int sum(int x)//区间求和 [1,x] { int sum=0; while(x>0) { sum+=c[x]; x-=Lowbit(x); } return sum; } bool cmp(Node a ,Node b) { return a.v < b.v; } int main() { int i,j; while(scanf("%d",&n) && n) { //离散化 for(i = 1; i <= n; i++) { scanf("%d",&in[i].v); in[i].order=i; } sort(in+1,in+n+1,cmp); for(i = 1; i <= n; i++) aa[in[i].order] = i; //树状数组求逆序 memset(c,0,sizeof(c)); __int64 ans=0; for(i = 1; i <= n; i++) { update(aa[i],1); ans += i-sum(aa[i]);//逆序数个数 } printf("%I64d\n",ans); } return 0; }
代码如下:(归并排序法)
int is1[112345],is2[112345];// is1为原数组,is2为临时数组,n为个人定义的长度 __int64 merge(int low,int mid,int high) { int i=low,j=mid+1,k=low; __int64 count=0; while(i<=mid&&j<=high) if(is1[i]<=is1[j])// 此处为稳定排序的关键,不能用小于 is2[k++]=is1[i++]; else { is2[k++]=is1[j++]; count+=j-k;// 每当后段的数组元素提前时,记录提前的距离 } while(i<=mid) is2[k++]=is1[i++]; while(j<=high) is2[k++]=is1[j++]; for(i=low;i<=high;i++)// 写回原数组 is1[i]=is2[i]; return count; } __int64 mergeSort(int a,int b)// 下标,例如数组int is[5],全部排序的调用为mergeSort(0,4) { if(a<b) { int mid=(a+b)/2; __int64 count=0; count+=mergeSort(a,mid); count+=mergeSort(mid+1,b); count+=merge(a,mid,b); return count; } return 0; }
求逆序数模板(树状数组+离散化 || 归并排序法),布布扣,bubuko.com
原文地址:http://blog.csdn.net/u012860063/article/details/38396703