码迷,mamicode.com
首页 > 其他好文 > 详细

Logistic回归的牛顿法及DFP、BFGS拟牛顿法求解

时间:2016-07-09 23:31:38      阅读:356      评论:0      收藏:0      [点我收藏+]

标签:

牛顿法

技术分享

 

  1  # coding:utf-8
  2 import matplotlib.pyplot as plt
  3 import numpy as np
  4 
  5 def dataN(length):#生成数据
  6     x = np.ones(shape = (length,3))
  7     y = np.zeros(length)
  8     for i in np.arange(0,length/100,0.02):
  9         x[100*i][0]=1
 10         x[100*i][1]=i
 11         x[100*i][2]=i + 1 + np.random.uniform(0,1.2)
 12         y[100*i]=1
 13         x[100*i+1][0]=1
 14         x[100*i+1][1]=i+0.01
 15         x[100*i+1][2]=i+0.01 + np.random.uniform(0,1.2)
 16         y[100*i+1]=0
 17     return x,y
 18 
 19 def sigmoid(x): #simoid 函数
 20     return 1.0/(1+np.exp(-x))
 21 
 22 def DFP(x,y, iter):#DFP拟牛顿法
 23     n = len(x[0])
 24     theta=np.ones((n,1))
 25     y=np.mat(y).T
 26     Gk=np.eye(n,n)
 27     grad_last = np.dot(x.T,sigmoid(np.dot(x,theta))-y)
 28     cost=[]
 29     for it in range(iter):
 30         pk = -1 * Gk.dot(grad_last)
 31         rate=alphA(x,y,theta,pk)
 32         theta = theta + rate * pk
 33         grad= np.dot(x.T,sigmoid(np.dot(x,theta))-y)
 34         delta_k = rate * pk
 35         y_k = (grad - grad_last)
 36         Pk = delta_k.dot(delta_k.T) / (delta_k.T.dot(y_k))
 37         Qk= Gk.dot(y_k).dot(y_k.T).dot(Gk) / (y_k.T.dot(Gk).dot(y_k)) * (-1)
 38         Gk += Pk + Qk
 39         grad_last = grad
 40         cost.append(np.sum(grad_last))
 41     return theta,cost
 42 
 43 def BFGS(x,y, iter):#BFGS拟牛顿法
 44     n = len(x[0])
 45     theta=np.ones((n,1))
 46     y=np.mat(y).T
 47     Bk=np.eye(n,n)
 48     grad_last = np.dot(x.T,sigmoid(np.dot(x,theta))-y)
 49     cost=[]
 50     for it in range(iter):
 51         pk = -1 * np.linalg.solve(Bk, grad_last)
 52         rate=alphA(x,y,theta,pk)
 53         theta = theta + rate * pk
 54         grad= np.dot(x.T,sigmoid(np.dot(x,theta))-y)
 55         delta_k = rate * pk
 56         y_k = (grad - grad_last)
 57         Pk = y_k.dot(y_k.T) / (y_k.T.dot(delta_k))
 58         Qk= Bk.dot(delta_k).dot(delta_k.T).dot(Bk) / (delta_k.T.dot(Bk).dot(delta_k)) * (-1)
 59         Bk += Pk + Qk
 60         grad_last = grad
 61         cost.append(np.sum(grad_last))
 62     return theta,cost
 63 
 64 def alphA(x,y,theta,pk): #选取前20次迭代cost最小的alpha
 65     c=float("inf")
 66     t=theta
 67     for k in range(1,200):
 68             a=1.0/k**2
 69             theta = t + a * pk
 70             f= np.sum(np.dot(x.T,sigmoid(np.dot(x,theta))-y))
 71             if abs(f)>c:
 72                 break
 73             c=abs(f)
 74             alpha=a
 75     return alpha
 76 
 77 def newtonMethod(x,y, iter):#牛顿法
 78     m = len(x)
 79     n = len(x[0])
 80     theta = np.zeros(n)
 81     cost=[]
 82     for it in range(iter):
 83         gradientSum = np.zeros(n)
 84         hessianMatSum = np.zeros(shape = (n,n))
 85         for i in range(m):
 86             hypothesis = sigmoid(np.dot(x[i], theta))
 87             loss =hypothesis-y[i]
 88             gradient = loss*x[i]
 89             gradientSum = gradientSum+gradient
 90             hessian=[b*x[i]*(1-hypothesis)*hypothesis for b in x[i]]
 91             hessianMatSum = np.add(hessianMatSum,hessian)
 92         hessianMatInv = np.mat(hessianMatSum).I
 93         for k in range(n):
 94             theta[k] -= np.dot(hessianMatInv[k], gradientSum)
 95         cost.append(np.sum(gradientSum))
 96     return theta,cost
 97 
 98 def tesT(theta, x, y):#准确率
 99     length=len(x)
100     count=0
101     for i in xrange(length):
102         predict = sigmoid(x[i, :] * np.reshape(theta,(3,1)))[0] > 0.5
103         if predict == bool(y[i]):
104             count+= 1
105     accuracy = float(count)/length
106     return accuracy
107 
108 def showP(x,y,theta,cost,iter):#作图
109     plt.figure(1)
110     plt.plot(range(iter),cost)
111     plt.figure(2)
112     color=[or,ob]
113     for i in xrange(length):
114         plt.plot(x[i, 1], x[i, 2],color[int(y[i])])
115     plt.plot([0,length/100],[-theta[0],-theta[0]-theta[1]*length/100]/theta[2])
116     plt.show()
117 length=200
118 iter=5
119 x,y=dataN(length)
120 
121 theta,cost=BFGS(x,y,iter)
122 print theta   #[[-18.93768161][-16.52178427][ 16.95779981]]
123 print tesT(theta, np.mat(x), y)  #0.935
124 showP(x,y,theta.getA(),cost,iter)
125 
126 theta,cost=DFP(x,y,iter)
127 print theta   #[[-18.51841028][-16.17880599][ 16.59649161]]
128 print tesT(theta, np.mat(x), y)  #0.935
129 showP(x,y,theta.getA(),cost,iter)
130 
131 theta,cost=newtonMethod(x,y,iter)
132 print theta   #[-14.49650536 -12.78692552  13.05843361]
133 print tesT(theta, np.mat(x), y)  #0.935
134 showP(x,y,theta,cost,iter)

 

技术分享技术分享技术分享技术分享

Logistic回归的牛顿法及DFP、BFGS拟牛顿法求解

标签:

原文地址:http://www.cnblogs.com/qw12/p/5656765.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!