标签:
题目链接:传送门
题目大意:给你n个区间,求任意k个区间交所包含点的数目之和。
题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt与k的组合数) ans=ans+(len*C(cnt,k))%mod;
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <algorithm> #include <cstring> #include <stack> #include <cctype> #include <queue> #include <string> #include <vector> #include <set> #include <map> #include <climits> #define lson root<<1,l,mid #define rson root<<1|1,mid+1,r #define fi first #define se second #define ping(x,y) ((x-y)*(x-y)) #define mst(x,y) memset(x,y,sizeof(x)) #define mcp(x,y) memcpy(x,y,sizeof(y)) using namespace std; #define gamma 0.5772156649015328606065120 #define MOD 1000000007 #define inf 0x3f3f3f3f #define N 200005 #define maxn 1050 typedef pair<int,int> PII; typedef long long LL; int n,k,m,cnt; LL fac[N]; struct Node{ int x,v; bool operator<(const Node&a)const{ if(x==a.x)return v>a.v; return x<a.x; } }node[N<<1]; int a[N<<1],sum[N<<1]; int has[N<<1]; LL ksm(LL a,LL b){ LL res=1; while(b){ if(b&1)res=res*a%MOD; b>>=1; a=a*a%MOD; } return res; } LL C(LL n,LL m){ if(n<m||m<0)return 0; LL s1=fac[n],s2=fac[n-m]*fac[m]%MOD; return s1*ksm(s2,MOD-2)%MOD; } int main(){ int i,j,group,x,y,v; fac[0]=1;cnt=0; for(i=1;i<N;++i)fac[i]=fac[i-1]*i%MOD; scanf("%d%d",&n,&k); for(i=1;i<=n;++i){ scanf("%d%d",&x,&y); node[cnt].x=x;node[cnt++].v=1; node[cnt].x=y+1;node[cnt++].v=-1; } sort(node,node+cnt); LL ans=0,la,num=0; ///la是区间左端点 for(i=0;i<cnt;++i){ if(num>=k) ans=(ans+(node[i].x-la*1ll)*C(num,k))%MOD; la=node[i].x; num+=node[i].v; } printf("%I64d\n",ans); return 0; }
Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem
标签:
原文地址:http://www.cnblogs.com/Kurokey/p/5657513.html