码迷,mamicode.com
首页 > 其他好文 > 详细

ML_推荐系统与降维

时间:2016-07-10 15:19:49      阅读:162      评论:0      收藏:0      [点我收藏+]

标签:

Learning Outcomes: By the end of this course, you will be able to:

-Create a collaborative filtering system. 构建一个协调过滤系统

-Reduce dimensionality of data using SVD, PCA, and random projections. 使用SVD、PCA和随机投影进行降维

-Perform matrix factorization using coordinate descent. 使用坐标下降进行矩阵分解

-Deploy latent factor models as a recommender system.

-Handle the cold start problem using side information. 处理冷启动问题

-Examine a product recommendation application.

-Implement these techniques in Python.

ML_推荐系统与降维

标签:

原文地址:http://www.cnblogs.com/sxbjdl/p/5657691.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!