码迷,mamicode.com
首页 > 其他好文 > 详细

hdu 5086(递推)

时间:2016-07-10 16:44:55      阅读:112      评论:0      收藏:0      [点我收藏+]

标签:

Revenge of Segment Tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1541    Accepted Submission(s): 552


Problem Description
In computer science, a segment tree is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the structure is built. A similar data structure is the interval tree.
A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of retrieved intervals or segments.
---Wikipedia

Today, Segment Tree takes revenge on you. As Segment Tree can answer the sum query of a interval sequence easily, your task is calculating the sum of the sum of all continuous sub-sequences of a given number sequence.
 

 

Input
The first line contains a single integer T, indicating the number of test cases.

Each test case begins with an integer N, indicating the length of the sequence. Then N integer Ai follows, indicating the sequence.

[Technical Specification]
1. 1 <= T <= 10
2. 1 <= N <= 447 000
3. 0 <= Ai <= 1 000 000 000
 

 

Output
For each test case, output the answer mod 1 000 000 007.
 

 

Sample Input
2 1 2 3 1 2 3
 

 

Sample Output
2 20
Hint
For the second test case, all continuous sub-sequences are [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. So the sum of the sum of the sub-sequences is 1 + 2 + 3 + 3 + 5 + 6 = 20. Huge input, faster I/O method is recommended. And as N is rather big, too straightforward algorithm (for example, O(N^2)) will lead Time Limit Exceeded. And one more little helpful hint, be careful about the overflow of int.
 

 

Source
 
题意:求一个序列所有的连续子序列之和。
题解:假设序列为 1 2 3
那么合法序列有:
1 第一项
1 2 第二项
2
1 2 3 第三项
2 3
3
dp[i]代表第i项 那么我们可以看出 dp[i] = dp[i-1]+i*a[i]
最终答案累加即可。
#include <iostream>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <algorithm>
#include <string.h>
using namespace std;
typedef long long LL;
const int mod = 1000000007;
const int N = 447005;
int n;
LL a[N];
LL dp[N];
int main()
{

    int tcase;
    scanf("%d",&tcase);
    while(tcase--){
        scanf("%d",&n);
        for(int i=1;i<=n;i++){
            scanf("%lld",&a[i]);
        }
        dp[1]  = a[1];
        for(int i=2;i<=n;i++){
            dp[i] = (dp[i-1] + (i*a[i])%mod)%mod;
        }
        LL ans = 0;
        for(int i=1;i<=n;i++){
            ans = (ans+dp[i])%mod;
        }
        printf("%lld\n",ans);
    }
    return 0;
}

 

hdu 5086(递推)

标签:

原文地址:http://www.cnblogs.com/liyinggang/p/5657928.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!