标签:
/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" /* #if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7) #define USE_IPP_CANNY 1 #else #undef USE_IPP_CANNY #endif */ #ifdef USE_IPP_CANNY namespace cv { static bool ippCanny(const Mat& _src, Mat& _dst, float low, float high) { int size = 0, size1 = 0; IppiSize roi = { _src.cols, _src.rows }; ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size); ippiFilterSobelHorizGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size1); size = std::max(size, size1); ippiCannyGetSize(roi, &size1); size = std::max(size, size1); AutoBuffer<uchar> buf(size + 64); uchar* buffer = alignPtr((uchar*)buf, 32); Mat _dx(_src.rows, _src.cols, CV_16S); if( ippiFilterSobelNegVertBorder_8u16s_C1R(_src.data, (int)_src.step, _dx.ptr<short>(), (int)_dx.step, roi, ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 ) return false; Mat _dy(_src.rows, _src.cols, CV_16S); if( ippiFilterSobelHorizBorder_8u16s_C1R(_src.data, (int)_src.step, _dy.ptr<short>(), (int)_dy.step, roi, ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 ) return false; if( ippiCanny_16s8u_C1R(_dx.ptr<short>(), (int)_dx.step, _dy.ptr<short>(), (int)_dy.step, _dst.data, (int)_dst.step, roi, low, high, buffer) < 0 ) return false; return true; } } #endif void cv::Canny( InputArray _src, OutputArray _dst, double low_thresh, double high_thresh, int aperture_size, bool L2gradient ) { Mat src = _src.getMat(); //输入图像,必须为单通道灰度图 CV_Assert( src.depth() == CV_8U ); // 8位无符号 _dst.create(src.size(), CV_8U); //根据src的大小构造目标矩阵dst Mat dst = _dst.getMat(); //输出图像,为单通道黑白图 // low_thresh 表示低阈值, high_thresh表示高阈值 // aperture_size 表示算子大小,默认为3 // L2gradient计算梯度幅值的标识,默认为false // 如果L2gradient为false 并且 apeture_size的值为-1(-1的二进制标识为:1111 1111) // L2gradient为false 则计算sobel导数时,用G = |Gx|+|Gy| // L2gradient为true 则计算sobel导数时,用G = Math.sqrt((Gx)^2 + (Gy)^2) 根号下 开平方 if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT) { // CV_CANNY_L2_GRADIENT 宏定义其值为: Value = (1<<31) 1左移31位 即2147483648 //backward compatibility // ~标识按位取反 aperture_size &= ~CV_CANNY_L2_GRADIENT; L2gradient = true; } // 判别条件1:aperture_size是奇数 // 判别条件2: aperture_size的范围应当是[3,7], 默认值3 if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7))) CV_Error(CV_StsBadFlag, ""); // 报错 if (low_thresh > high_thresh) // 如果低阈值 > 高阈值 std::swap(low_thresh, high_thresh); // 则交换低阈值和高阈值 #ifdef HAVE_TEGRA_OPTIMIZATION if (tegra::canny(src, dst, low_thresh, high_thresh, aperture_size, L2gradient)) return; #endif #ifdef USE_IPP_CANNY if( aperture_size == 3 && !L2gradient && ippCanny(src, dst, (float)low_thresh, (float)high_thresh) ) return; #endif const int cn = src.channels(); // cn为输入图像的通道数 Mat dx(src.rows, src.cols, CV_16SC(cn)); // 存储 x方向 方向导数的矩阵,CV_16SC(cn):16位有符号cn通道 Mat dy(src.rows, src.cols, CV_16SC(cn)); // 存储 y方向 方向导数的矩阵 ...... /*Sobel参数说明:(参考cvSobel) cvSobel( const CvArr* src, // 输入图像 CvArr* dst, // 输入图像 int xorder, // x方向求导的阶数 int yorder, // y方向求导的阶数 int aperture_size = 3 // 滤波器的宽和高 必须是奇数 ); */ // BORDER_REPLICATE 表示当卷积点在图像的边界时,原始图像边缘的像素会被复制,并用复制的像素扩展原始图的尺寸 //计算x方向的sobel方向导数,计算结果存在dx中 Sobel(src, dx, CV_16S, 1, 0, aperture_size, 1, 0, cv::BORDER_REPLICATE); //计算y方向的sobel方向导数,计算结果存在dy中 Sobel(src, dy, CV_16S, 0, 1, aperture_size, 1, 0, cv::BORDER_REPLICATE); //L2gradient为true时, 表示需要根号下开平方运算,阈值也需要平方 if (L2gradient) { low_thresh = std::min(32767.0, low_thresh); high_thresh = std::min(32767.0, high_thresh); if (low_thresh > 0) low_thresh *= low_thresh; //低阈值平方运算 if (high_thresh > 0) high_thresh *= high_thresh; //高阈值平方运算 } int low = cvFloor(low_thresh); // cvFloor返回不大于参数的最大整数值, 相当于取整 int high = cvFloor(high_thresh); // ptrdiff_t 是C/C++标准库中定义的一个数据类型,signed类型,通常用于存储两个指针的差(距离),可以是负数 // mapstep 用于存放 ptrdiff_t mapstep = src.cols + 2; // +2 表示左右各扩展一条边 // AutoBuffer<uchar> 会自动分配一定大小的内存,并且指定内存中的数据类型是uchar // 列数 +2 表示图像左右各自扩展一条边 (用于复制边缘像素,扩大原始图像) // 行数 +2 表示图像上下各自扩展一条边 AutoBuffer<uchar> buffer((src.cols+2)*(src.rows+2) + cn * mapstep * 3 * sizeof(int)); int* mag_buf[3]; //定义一个大小为3的int型指针数组, mag_buf[0] = (int*)(uchar*)buffer; mag_buf[1] = mag_buf[0] + mapstep*cn; mag_buf[2] = mag_buf[1] + mapstep*cn; memset(mag_buf[0], 0, /* cn* */mapstep*sizeof(int)); uchar* map = (uchar*)(mag_buf[2] + mapstep*cn); memset(map, 1, mapstep); memset(map + mapstep*(src.rows + 1), 1, mapstep); int maxsize = std::max(1 << 10, src.cols * src.rows / 10); // 2的10次幂 1024 std::vector<uchar*> stack(maxsize); // 定义指针类型向量,用于存地址 uchar **stack_top = &stack[0]; // 栈顶指针(指向指针的指针),指向stack[0], stack[0]也是一个指针 uchar **stack_bottom = &stack[0]; // 栈底指针 ,初始时 栈底指针 == 栈顶指针 // 梯度的方向被近似到四个角度之一 (0, 45, 90, 135 四选一) /* sector numbers (Top-Left Origin) 1 2 3 * * * * * * 0*******0 * * * * * * 3 2 1 */ // define 定义函数块 // CANNY_PUSH(d) 是入栈函数, 参数d表示地址指针,让该指针指向的内容为整数2,并入栈,栈顶指针+1 // 2表示 像素属于某条边缘 可以看下方的注释 // CANNY_POP(d) 是出栈函数, d指向栈底指针 #define CANNY_PUSH(d) *(d) = uchar(2), *stack_top++ = (d) #define CANNY_POP(d) (d) = *--stack_top // calculate magnitude and angle of gradient, perform non-maxima suppression. // fill the map with one of the following values: // 0 - the pixel might belong to an edge 可能属于边缘 // 1 - the pixel can not belong to an edge 不属于边缘 // 2 - the pixel does belong to an edge 一定属于边缘 // for内进行非极大值抑制 + 滞后阈值处理 for (int i = 0; i <= src.rows; i++) // i 表示第i行 { // i == 0 时,_norm 指向 mag_buf[1] // i > 0 时, _norm 指向 mag_buf[2] // +1 表示跳过每行的第一个元素,因为是后扩展的边,不可能是边缘 int* _norm = mag_buf[(i > 0) + 1] + 1; if (i < src.rows) { short* _dx = dx.ptr<short>(i); // _dx指向dx矩阵的第i行 short* _dy = dy.ptr<short>(i); // _dy指向dy矩阵的第i行 if (!L2gradient) // 如果 L2gradient为false { for (int j = 0; j < src.cols*cn; j++) // 对第i行里的每一个值都进行计算 _norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j])); // 用||+||计算 } else { for (int j = 0; j < src.cols*cn; j++) //用平方计算,当 L2gradient为 true时,高低阈值都被平方了,所以此处_norm[j]无需开平方 _norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j]; // } if (cn > 1) // 如果不是单通道(由于输入图像必须是单通道,所以个人觉得这个if不成立) { for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn) { int maxIdx = jn; for(int k = 1; k < cn; ++k) if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k; _norm[j] = _norm[maxIdx]; _dx[j] = _dx[maxIdx]; _dy[j] = _dy[maxIdx]; } } _norm[-1] = _norm[src.cols] = 0; // 最后一列和第一列的梯度幅值设置为0 } // 当i == src.rows (最后一行)时,申请空间并且每个空间的值初始化为0, 存储在mag_buf[2]中 else memset(_norm-1, 0, /* cn* */mapstep*sizeof(int)); // at the very beginning we do not have a complete ring // buffer of 3 magnitude rows for non-maxima suppression if (i == 0) continue; uchar* _map = map + mapstep*i + 1; // _map 指向第 i+1 行,+1表示跳过该行第一个元素 _map[-1] = _map[src.cols] = 1; // 第一列和最后一列不是边缘,所以设置为1 int* _mag = mag_buf[1] + 1; // take the central row 中间那一行 ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1]; ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1]; const short* _x = dx.ptr<short>(i-1); const short* _y = dy.ptr<short>(i-1); // 如果栈的大小不够,则重新为栈分配内存(相当于扩大容量) if ((stack_top - stack_bottom) + src.cols > maxsize) { int sz = (int)(stack_top - stack_bottom); maxsize = maxsize * 3/2; stack.resize(maxsize); stack_bottom = &stack[0]; stack_top = stack_bottom + sz; } int prev_flag = 0; //前一个像素点 0:非边缘点 ;1:边缘点 for (int j = 0; j < src.cols; j++) // 第 j 列 { #define CANNY_SHIFT 15 // tan22.5 const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5); int m = _mag[j]; if (m > low) // 如果大于低阈值 { int xs = _x[j]; // dx中 第i-1行 第j列 int ys = _y[j]; // dy中 第i-1行 第j列 int x = std::abs(xs); int y = std::abs(ys) << CANNY_SHIFT; int tg22x = x * TG22; if (y < tg22x) //角度小于22.5 用区间表示:[0, 22.5) { // 与左右两点的梯度幅值比较,如果比左右都大 //(此时当前点是左右邻域内的极大值),则 goto __ocv_canny_push 执行入栈操作 if (m > _mag[j-1] && m >= _mag[j+1]) goto __ocv_canny_push; } else //角度大于22.5 { int tg67x = tg22x + (x << (CANNY_SHIFT+1)); if (y > tg67x) //(67.5, 90) { //与上下两点的梯度幅值比较,如果比上下都大 //(此时当前点是左右邻域内的极大值),则 goto __ocv_canny_push 执行入栈操作 if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) goto __ocv_canny_push; } else //[22.5, 67.5] { // ^ 按位异或 如果xs与ys异号 则取-1 否则取1 int s = (xs ^ ys) < 0 ? -1 : 1; //比较对角线邻域 if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) goto __ocv_canny_push; } } } //比当前的梯度幅值低阈值还低,直接被确定为非边缘 prev_flag = 0; _map[j] = uchar(1); // 1 表示不属于边缘 continue; __ocv_canny_push: // 前一个点不是边缘点 并且 当前点的幅值大于高阈值 并且 正上方的点不是边缘点 if (!prev_flag && m > high && _map[j-mapstep] != 2) { //将当前点的地址入栈,入栈前,会将该点地址指向的值设置为2(查看上面的宏定义函数块里) CANNY_PUSH(_map + j); prev_flag = 1; } else _map[j] = 0; } // scroll the ring buffer // 交换指针指向的位置,向上覆盖,把mag_[1]的内容覆盖到mag_buf[0]上 // 把mag_[2]的内容覆盖到mag_buf[1]上 // 最后 让mag_buf[2]指向_mag指向的那一行 _mag = mag_buf[0]; mag_buf[0] = mag_buf[1]; mag_buf[1] = mag_buf[2]; mag_buf[2] = _mag; } // now track the edges (hysteresis thresholding) // 通过上面的for循环,确定了各个邻域内的极大值点为边缘点(标记为2) // 现在,在这些边缘点的8邻域内(上下左右+4个对角),将可能的边缘点(标记为0)确定为边缘 while (stack_top > stack_bottom) { uchar* m; if ((stack_top - stack_bottom) + 8 > maxsize) { int sz = (int)(stack_top - stack_bottom); maxsize = maxsize * 3/2; stack.resize(maxsize); stack_bottom = &stack[0]; stack_top = stack_bottom + sz; } CANNY_POP(m); // 出栈 if (!m[-1]) CANNY_PUSH(m - 1); if (!m[1]) CANNY_PUSH(m + 1); if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1); if (!m[-mapstep]) CANNY_PUSH(m - mapstep); if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1); if (!m[mapstep-1]) CANNY_PUSH(m + mapstep - 1); if (!m[mapstep]) CANNY_PUSH(m + mapstep); if (!m[mapstep+1]) CANNY_PUSH(m + mapstep + 1); } // the final pass, form the final image // 生成边缘图 const uchar* pmap = map + mapstep + 1; uchar* pdst = dst.ptr(); for (int i = 0; i < src.rows; i++, pmap += mapstep, pdst += dst.step) { for (int j = 0; j < src.cols; j++) pdst[j] = (uchar)-(pmap[j] >> 1); } } void cvCanny( const CvArr* image, CvArr* edges, double threshold1, double threshold2, int aperture_size ) { cv::Mat src = cv::cvarrToMat(image), dst = cv::cvarrToMat(edges); CV_Assert( src.size == dst.size && src.depth() == CV_8U && dst.type() == CV_8U ); cv::Canny(src, dst, threshold1, threshold2, aperture_size & 255, (aperture_size & CV_CANNY_L2_GRADIENT) != 0); } /* End of file. */
标签:
原文地址:http://blog.csdn.net/u010429424/article/details/51866361