码迷,mamicode.com
首页 > 其他好文 > 详细

RabbitMQ(三):任务分发机制

时间:2016-07-10 19:15:53      阅读:389      评论:0      收藏:0      [点我收藏+]

标签:



       在上篇文章中,我们解决了从发送端(Producer)向接收端(Consumer)发送“Hello World”的问题。在实际的应用场景中,这是远远不够的。从本篇文章开始,我们将结合更加实际的应用场景来讲解更多的高级用法。

      当有Consumer需要大量的运算时,RabbitMQ Server需要一定的分发机制来balance每个Consumer的load。试想一下,对于web application来说,在一个很多的HTTP request里是没有时间来处理复杂的运算的,只能通过后台的一些工作线程来完成。接下来我们分布讲解。 

      应用场景就是RabbitMQ Server会将queue的Message分发给不同的Consumer以处理计算密集型的任务:

技术分享

1. 准备

   在上一篇文章中,我们简单在Message中包含了一个字符串"Hello World"。现在为了是Consumer做的是计算密集型的工作,那就不能简单的字符串了。在现实应用中,Consumer有可能做的是一个图片的resize,或者是pdf文件的渲染或者内容提取。但是作为Demo,还是用字符串模拟吧:通过字符串中的.的数量来决定计算的复杂度,每个.都会消耗1s,即sleep(1)。

    还是复用上篇文章中的code,根据“计算密集型”做一下简单的修改,为了辨别,我们把send.py 的名字换成new_task.py

  1. import sys  
  2.   
  3. message = ‘ ‘.join(sys.argv[1:]) or "Hello World!"  
  4. channel.basic_publish(exchange=‘‘,  
  5.                       routing_key=‘hello‘,  
  6.                       body=message)  
  7. print " [x] Sent %r" % (message,)  
技术分享
同样的道理,把receive.py的名字换成worker.py,并且根据Message中的.的数量进行计算密集型模拟:

  1. import time  
  2.   
  3. def callback(ch, method, properties, body):  
  4.     print " [x] Received %r" % (body,)  
  5.     time.sleep( body.count(‘.‘) )  
  6.     print " [x] Done"  


2. Round-robin dispatching 循环分发

        RabbitMQ的分发机制非常适合扩展,而且它是专门为并发程序设计的。如果现在load加重,那么只需要创建更多的Consumer来进行任务处理即可。当然了,对于负载还要加大怎么办?我没有遇到过这种情况,那就可以创建多个virtual Host,细化不同的通信类别了。

     首先开启两个Consumer,即运行两个worker.py。

Console1:

  1. shell1$ python worker.py  
  2.  [*] Waiting for messages. To exit press CTRL+C  
Consule2:

  1. shell2$ python worker.py  
  2.  [*] Waiting for messages. To exit press CTRL+C  
技术分享
Producer new_task.py要Publish Message了:

  1. shell3$ python new_task.py First message.  
  2. shell3$ python new_task.py Second message..  
  3. shell3$ python new_task.py Third message...  
  4. shell3$ python new_task.py Fourth message....  
  5. shell3$ python new_task.py Fifth message.....  
技术分享
注意一下:.代表的sleep(1)。接着开一下Consumer worker.py收到了什么:

Console1:

  1. shell1$ python worker.py  
  2.  [*] Waiting for messages. To exit press CTRL+C  
  3.  [x] Received ‘First message.‘  
  4.  [x] Received ‘Third message...‘  
  5.  [x] Received ‘Fifth message.....‘  
技术分享
Console2:

  1. shell2$ python worker.py  
  2.  [*] Waiting for messages. To exit press CTRL+C  
  3.  [x] Received ‘Second message..‘  
  4.  [x] Received ‘Fourth message....‘  
默认情况下,RabbitMQ 会顺序的分发每个Message。当每个收到ack后,会将该Message删除,然后将下一个Message分发到下一个Consumer。这种分发方式叫做round-robin。这种分发还有问题,接着向下读吧。


3. Message acknowledgment 消息确认

      每个Consumer可能需要一段时间才能处理完收到的数据。如果在这个过程中,Consumer出错了,异常退出了,而数据还没有处理完成,那么非常不幸,这段数据就丢失了。因为我们采用no-ack的方式进行确认,也就是说,每次Consumer接到数据后,而不管是否处理完成,RabbitMQ Server会立即把这个Message标记为完成,然后从queue中删除了。

     如果一个Consumer异常退出了,它处理的数据能够被另外的Consumer处理,这样数据在这种情况下就不会丢失了(注意是这种情况下)。

      为了保证数据不被丢失,RabbitMQ支持消息确认机制,即acknowledgments。为了保证数据能被正确处理而不仅仅是被Consumer收到,那么我们不能采用no-ack。而应该是在处理完数据后发送ack。

    在处理数据后发送的ack,就是告诉RabbitMQ数据已经被接收,处理完成,RabbitMQ可以去安全的删除它了。

    如果Consumer退出了但是没有发送ack,那么RabbitMQ就会把这个Message发送到下一个Consumer。这样就保证了在Consumer异常退出的情况下数据也不会丢失。

    这里并没有用到超时机制。RabbitMQ仅仅通过Consumer的连接中断来确认该Message并没有被正确处理。也就是说,RabbitMQ给了Consumer足够长的时间来做数据处理。

    默认情况下,消息确认是打开的(enabled)。在上篇文章中我们通过no_ack = True 关闭了ack。重新修改一下callback,以在消息处理完成后发送ack:

  1. def callback(ch, method, properties, body):  
  2.     print " [x] Received %r" % (body,)  
  3.     time.sleep( body.count(‘.‘) )  
  4.     print " [x] Done"  
  5.     ch.basic_ack(delivery_tag = method.delivery_tag)  
  6.   
  7. channel.basic_consume(callback,  
  8.                       queue=‘hello‘)  
     这样即使你通过Ctr-C中断了worker.py,那么Message也不会丢失了,它会被分发到下一个Consumer。

      如果忘记了ack,那么后果很严重。当Consumer退出时,Message会重新分发。然后RabbitMQ会占用越来越多的内存,由于RabbitMQ会长时间运行,因此这个“内存泄漏”是致命的。去调试这种错误,可以通过一下命令打印un-acked Messages:

  1. $ sudo rabbitmqctl list_queues name messages_ready messages_unacknowledged  
  2. Listing queues ...  
  3. hello    0       0  
  4. ...done.  


4. Message durability消息持久化

     在上一节中我们知道了即使Consumer异常退出,Message也不会丢失。但是如果RabbitMQ Server退出呢?软件都有bug,即使RabbitMQ Server是完美毫无bug的(当然这是不可能的,是软件就有bug,没有bug的那不叫软件),它还是有可能退出的:被其它软件影响,或者系统重启了,系统panic了。。。

    为了保证在RabbitMQ退出或者crash了数据仍没有丢失,需要将queue和Message都要持久化。

queue的持久化需要在声明时指定durable=True:

  1. channel.queue_declare(queue=‘hello‘, durable=True)  
上述语句执行不会有什么错误,但是确得不到我们想要的结果,原因就是RabbitMQ Server已经维护了一个叫hello的queue,那么上述执行不会有任何的作用,也就是hello的任何属性都不会被影响。这一点在上篇文章也讨论过。

那么workaround也很简单,声明一个另外的名字的queue,比如名字定位task_queue:

  1. channel.queue_declare(queue=‘task_queue‘, durable=True)  
再次强调,Producer和Consumer都应该去创建这个queue,尽管只有一个地方的创建是真正起作用的:

接下来,需要持久化Message,即在Publish的时候指定一个properties,方式如下:

  1. channel.basic_publish(exchange=‘‘,  
  2.                       routing_key="task_queue",  
  3.                       body=message,  
  4.                       properties=pika.BasicProperties(  
  5.                          delivery_mode = 2# make message persistent  
  6.                       ))  
关于持久化的进一步讨论:

    为了数据不丢失,我们采用了:

  1. 在数据处理结束后发送ack,这样RabbitMQ Server会认为Message Deliver 成功。
  2. 持久化queue,可以防止RabbitMQ Server 重启或者crash引起的数据丢失。
  3. 持久化Message,理由同上。

    但是这样能保证数据100%不丢失吗?

    答案是否定的。问题就在与RabbitMQ需要时间去把这些信息存到磁盘上,这个time window虽然短,但是它的确还是有。在这个时间窗口内如果数据没有保存,数据还会丢失。还有另一个原因就是RabbitMQ并不是为每个Message都做fsync:它可能仅仅是把它保存到Cache里,还没来得及保存到物理磁盘上。

    因此这个持久化还是有问题。但是对于大多数应用来说,这已经足够了。当然为了保持一致性,你可以把每次的publish放到一个transaction中。这个transaction的实现需要user defined codes。

    那么商业系统会做什么呢?一种可能的方案是在系统panic时或者异常重启时或者断电时,应该给各个应用留出时间去flash cache,保证每个应用都能exit gracefully。


5. Fair dispatch 公平分发

    你可能也注意到了,分发机制不是那么优雅。默认状态下,RabbitMQ将第n个Message分发给第n个Consumer。当然n是取余后的。它不管Consumer是否还有unacked Message,只是按照这个默认机制进行分发。

   那么如果有个Consumer工作比较重,那么就会导致有的Consumer基本没事可做,有的Consumer却是毫无休息的机会。那么,RabbitMQ是如何处理这种问题呢?

技术分享

  通过 basic.qos 方法设置prefetch_count=1 。这样RabbitMQ就会使得每个Consumer在同一个时间点最多处理一个Message。换句话说,在接收到该Consumer的ack前,他它不会将新的Message分发给它。 设置方法如下:

  1. channel.basic_qos(prefetch_count=1)  
注意,这种方法可能会导致queue满。当然,这种情况下你可能需要添加更多的Consumer,或者创建更多的virtualHost来细化你的设计。


6. 最终版本

new_task.py script:

  1. #!/usr/bin/env python  
  2. import pika  
  3. import sys  
  4.   
  5. connection = pika.BlockingConnection(pika.ConnectionParameters(  
  6.         host=‘localhost‘))  
  7. channel = connection.channel()  
  8.   
  9. channel.queue_declare(queue=‘task_queue‘, durable=True)  
  10.   
  11. message = ‘ ‘.join(sys.argv[1:]) or "Hello World!"  
  12. channel.basic_publish(exchange=‘‘,  
  13.                       routing_key=‘task_queue‘,  
  14.                       body=message,  
  15.                       properties=pika.BasicProperties(  
  16.                          delivery_mode = 2# make message persistent  
  17.                       ))  
  18. print " [x] Sent %r" % (message,)  
  19. connection.close()  

worker.py script:

  1. #!/usr/bin/env python  
  2. import pika  
  3. import time  
  4.   
  5. connection = pika.BlockingConnection(pika.ConnectionParameters(  
  6.         host=‘localhost‘))  
  7. channel = connection.channel()  
  8.   
  9. channel.queue_declare(queue=‘task_queue‘, durable=True)  
  10. print ‘ [*] Waiting for messages. To exit press CTRL+C‘  
  11.   
  12. def callback(ch, method, properties, body):  
  13.     print " [x] Received %r" % (body,)  
  14.     time.sleep( body.count(‘.‘) )  
  15.     print " [x] Done"  
  16.     ch.basic_ack(delivery_tag = method.delivery_tag)  
  17.   
  18. channel.basic_qos(prefetch_count=1)  
  19. channel.basic_consume(callback,  
  20.                       queue=‘task_queue‘)  
  21.   
  22. channel.start_consuming()  

RabbitMQ(三):任务分发机制

标签:

原文地址:http://blog.csdn.net/u010233323/article/details/51861170

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!