标签:
Two elements of a binary search tree (BST) are swapped by mistake.
Recover the tree without changing its structure.
Note:
A solution using O(n) space is pretty straight forward. Could you devise a constant space solution?
要求找到BST中放错位置的两个节点.
直观思路是使用中序遍历来解.一颗正常的BST,它的正常中序遍历序列是递增序列(非递减,如果有重复元素).所以如果有元素被交换,则会出现递减的情况.如果不是前后继的两个节点,则只会出现一次颠倒的情况,而如果不是前后继,则会出现两次,举例如下:
1 2 3 4 5 6 7这是一个正常的BST中序遍历序列.如果是前后继的两个节点,比如3,4交换,则中序遍历序列是: 1 2 4 3 5 6 7. 4 3出现一次逆序. 如果不是前后继,比如3,5交换,则中序遍历为1 2 5 4 3 6 7. 则5 4, 4 3是两次逆序.可以看出在第一个逆序对里前面一个值是第一个逆序节点.而在后一个逆序对里后一个值是逆序节点. 而在仅有一个逆序对的情况下,前一个值为第一个逆序节点,后一个值为第二个逆序节点. 时间复杂度为O(n).空间复杂度为O(nlogn).代码如下:
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def recoverTree(self, root): """ :type root: TreeNode :rtype: void Do not return anything, modify root in-place instead. """ if not root: return stack = [] prev = TreeNode(-sys.maxint-1) cur = root former = None latter = None while stack or cur: if cur: stack.append(cur) cur = cur.left else: cur = stack.pop() if cur.val < prev.val: if not former: former = prev latter = cur prev = cur else: latter = cur break else: prev = cur cur = cur.right former.val, latter.val = latter.val, former.val
题目要求的O(1)空间复杂度需要结合morris遍历来做, 详见http://www.cnblogs.com/AnnieKim/archive/2013/06/15/morristraversal.html
标签:
原文地址:http://www.cnblogs.com/sherylwang/p/5660919.html