码迷,mamicode.com
首页 > 其他好文 > 详细

二分图中及匹配的基本概念与定理

时间:2016-07-12 15:23:28      阅读:155      评论:0      收藏:0      [点我收藏+]

标签:

定义:设G是一个图。如果存在VG的一个划分X,Y,使得G的任何一条边的一个端点在X中,另一个端点在Y中,则称G为二分图,记作G=(X,Y,E)。如果G中X的每个顶点都与Y的每个顶点相邻,则称G为完全二分图

 

二分图的匹配:给定一个二分图G,M为G边集的一个子集,如果M满足当中的任意两条边都不依附于同一个顶点,则称M是       一个匹配。

最小顶点覆盖:在二分图中寻找一个尽量小的点集,使图中每一条边至少有一个点在该点集中。

最小顶点覆盖 == 最大匹配。

  反证法证明:假设当前存在一条两个端点都不在最小顶点覆盖点集中,那么这么光芒四射的边定可以增大最大匹配边集,与最大匹配矛盾,所以得证。

 

最小路径覆盖:在二分图中寻找一个尽量小的边集,使图中每一个点都是该边集中某条边的端点。

最小路径覆盖 == 点数 - 最大匹配。

  证明:因为一条边最多可以包含两个顶点,所以我们选边的时候让这样的边尽量多,也就是说最大匹配的边集数目咯。剩下的点就只能一个边连上一个点到集合里啦。

 

最大独立集:在N个点中选出来一个最大点集,使这个点集中的任意两点之间都没有边。

最大独立集 == 顶点数 - 最大匹配。

  证明:因为去掉最大匹配两端的顶点去掉以后,剩下的点肯定是独立集。我们再从每个匹配里面挑选出来一个点加入到独立集中,也是不会破坏原有独立集的独立性的。

增广路径的性质:
(1)有奇数条边。
(2)起点在二分图的左半边,终点在右半边。
(3)路径上的点一定是一个在左半边,一个在右半边,交替出现。(其实二分图的性质就决定了这一点,因为二分图同一边的点之间没有边相连,不要忘记哦。)
(4)整条路径上没有重复的点。
(5)起点和终点都是目前还没有配对的点,而其它所有点都是已经配好对的。

二分图中及匹配的基本概念与定理

标签:

原文地址:http://www.cnblogs.com/zhengguiping--9876/p/5663501.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!