标签:
写在前面:
这篇blog主要参考pixhawk的高度解算算法解读,并且加以扩展,扩展到其他传感器,其实里面处理好多只是记录了流程,至于里面实际物理意义并不是很清楚,也希望大牛能够指导一下。
概述:
整个算法的核心思想是由地理坐标系下的加速度通过积分,来获得速度、位置信息;经过2次修正产生可利用的信息,第一次是利用传感器计算修正系数产生加速度的偏差修正加速度,第二次是利用修正系数修正位置;最后可利用速度经过加速度修正,可利用的位置经过了加速度和位置修正。加速度的修正过程是由机体测量的加速度通过减去偏差,再转换到地理坐标系;位置的修正统一利用inertial_filter_correct()函数。
这里传感器的作用就是计算一个校正系数来对加速度偏移量进行校正。
代码思路
1. 变量初始化。
float z_est[2] = { 0.0f, 0.0f }; // z轴的高度、速度 float acc[] = { 0.0f, 0.0f, 0.0f }; //地理坐标系(NED)的加速度数据 float acc_bias[] = { 0.0f, 0.0f, 0.0f }; // 机体坐标系下的加速度偏移量 float corr_baro = 0.0f; // D float corr_gps[3][2] = { { 0.0f, 0.0f }, // N (pos, vel) { 0.0f, 0.0f }, // E (pos, vel) { 0.0f, 0.0f }, // D (pos, vel) }; float corr_vision[3][2] = { { 0.0f, 0.0f }, // N (pos, vel) { 0.0f, 0.0f }, // E (pos, vel) { 0.0f, 0.0f }, // D (pos, vel) }; float corr_mocap[3][1] = { { 0.0f }, // N (pos) { 0.0f }, // E (pos) { 0.0f }, // D (pos) }; float corr_lidar = 0.0f;//据说是超声波 float corr_flow[] = { 0.0f, 0.0f }; // N E bool gps_valid = false; // GPS is valid bool lidar_valid = false; // lidar is valid bool flow_valid = false; // flow is valid bool flow_accurate = false; // flow should be accurate (this flag not updated if flow_valid == false) bool vision_valid = false; // vision is valid bool mocap_valid = false; // mocap is valid
2. 计算气压计高度的零点偏移,主要是取200个数据求平均。
baro_offset += sensor.baro_alt_meter; baro_offset /= (float) baro_init_cnt;
3.各传感器计算得带各自的修正系数和权重
corr_baro = baro_offset - sensor.baro_alt_meter[0] - z_est[0]; corr_lidar = lidar_offset - dist_ground - z_est[0]; corr_flow[0] = flow_v[0] - x_est[1]; /* velocity correction */ corr_flow[1] = flow_v[1] - y_est[1]; corr_vision[0][0] = vision.x - x_est[0]; /* calculate correction for position */ corr_vision[1][0] = vision.y - y_est[0]; corr_vision[2][0] = vision.z - z_est[0]; corr_vision[0][1] = vision.vx - x_est[1]; /* calculate correction for velocity */ corr_vision[1][1] = vision.vy - y_est[1]; corr_vision[2][1] = vision.vz - z_est[1]; corr_mocap[0][0] = mocap.x - x_est[0]; /* calculate correction for position */ corr_mocap[1][0] = mocap.y - y_est[0]; corr_mocap[2][0] = mocap.z - z_est[0]; corr_gps[0][0] = gps_proj[0] - est_buf[est_i][0][0]; /* calculate correction for position */ corr_gps[1][0] = gps_proj[1] - est_buf[est_i][1][0]; corr_gps[2][0] = local_pos.ref_alt - alt - est_buf[est_i][2][0]; corr_gps[0][1] = gps.vel_n_m_s - est_buf[est_i][0][1];/* calculate correction for velocity */ corr_gps[1][1] = gps.vel_e_m_s - est_buf[est_i][1][1]; corr_gps[2][1] = gps.vel_d_m_s - est_buf[est_i][2][1]; w_gps_xy = min_eph_epv / fmaxf(min_eph_epv, gps.eph); w_gps_z = min_eph_epv / fmaxf(min_eph_epv, gps.epv);
4.判断是否超时
if ((flow_valid || lidar_valid) && t > (flow_time + flow_topic_timeout)) if (gps_valid && (t > (gps.timestamp_position + gps_topic_timeout))) if (vision_valid && (t > (vision.timestamp_boot + vision_topic_timeout))) if (mocap_valid && (t > (mocap.timestamp_boot + mocap_topic_timeout))) if (lidar_valid && (t > (lidar_time + lidar_timeout)))
5.判断是用哪一个传感器
/* use GPS if it's valid and reference position initialized */ bool use_gps_xy = ref_inited && gps_valid && params.w_xy_gps_p > MIN_VALID_W; bool use_gps_z = ref_inited && gps_valid && params.w_z_gps_p > MIN_VALID_W; /* use VISION if it's valid and has a valid weight parameter */ bool use_vision_xy = vision_valid && params.w_xy_vision_p > MIN_VALID_W; bool use_vision_z = vision_valid && params.w_z_vision_p > MIN_VALID_W; /* use MOCAP if it's valid and has a valid weight parameter */ bool use_mocap = mocap_valid && params.w_mocap_p > MIN_VALID_W && params.att_ext_hdg_m == mocap_heading; //check if external heading is mocap if (params.disable_mocap) { //disable mocap if fake gps is used use_mocap = false; } /* use flow if it's valid and (accurate or no GPS available) */ bool use_flow = flow_valid && (flow_accurate || !use_gps_xy); /* use LIDAR if it's valid and lidar altitude estimation is enabled */ use_lidar = lidar_valid && params.enable_lidar_alt_est;
6.计算权重
float flow_q = flow.quality / 255.0f; float flow_q_weight = (flow_q - params.flow_q_min) / (1.0f - params.flow_q_min); w_flow = PX4_R(att.R, 2, 2) * flow_q_weight / fmaxf(1.0f, flow_dist); if (!flow_accurate) { w_flow *= 0.05f; } float w_xy_gps_p = params.w_xy_gps_p * w_gps_xy; float w_xy_gps_v = params.w_xy_gps_v * w_gps_xy; float w_z_gps_p = params.w_z_gps_p * w_gps_z; float w_z_gps_v = params.w_z_gps_v * w_gps_z; float w_xy_vision_p = params.w_xy_vision_p; float w_xy_vision_v = params.w_xy_vision_v; float w_z_vision_p = params.w_z_vision_p; float w_mocap_p = params.w_mocap_p; /* reduce GPS weight if optical flow is good */ if (use_flow && flow_accurate) { w_xy_gps_p *= params.w_gps_flow; w_xy_gps_v *= params.w_gps_flow; } /* baro offset correction */ if (use_gps_z) { float offs_corr = corr_gps[2][0] * w_z_gps_p * dt; baro_offset += offs_corr; corr_baro += offs_corr; } /* accelerometer bias correction for GPS (use buffered rotation matrix) */ float accel_bias_corr[3] = { 0.0f, 0.0f, 0.0f };
7.根据使用的传感器计算加速度偏差
if (use_gps_xy) { accel_bias_corr[0] -= corr_gps[0][0] * w_xy_gps_p * w_xy_gps_p; accel_bias_corr[0] -= corr_gps[0][1] * w_xy_gps_v; accel_bias_corr[1] -= corr_gps[1][0] * w_xy_gps_p * w_xy_gps_p; accel_bias_corr[1] -= corr_gps[1][1] * w_xy_gps_v; } if (use_gps_z) { accel_bias_corr[2] -= corr_gps[2][0] * w_z_gps_p * w_z_gps_p; accel_bias_corr[2] -= corr_gps[2][1] * w_z_gps_v; } /* transform error vector from NED frame to body frame */ for (int i = 0; i < 3; i++) { float c = 0.0f; for (int j = 0; j < 3; j++) { c += R_gps[j][i] * accel_bias_corr[j]; } if (PX4_ISFINITE(c)) { acc_bias[i] += c * params.w_acc_bias * dt; } } /* accelerometer bias correction for VISION (use buffered rotation matrix) */ accel_bias_corr[0] = 0.0f; accel_bias_corr[1] = 0.0f; accel_bias_corr[2] = 0.0f; if (use_vision_xy) { accel_bias_corr[0] -= corr_vision[0][0] * w_xy_vision_p * w_xy_vision_p; accel_bias_corr[0] -= corr_vision[0][1] * w_xy_vision_v; accel_bias_corr[1] -= corr_vision[1][0] * w_xy_vision_p * w_xy_vision_p; accel_bias_corr[1] -= corr_vision[1][1] * w_xy_vision_v; } if (use_vision_z) { accel_bias_corr[2] -= corr_vision[2][0] * w_z_vision_p * w_z_vision_p; } /* accelerometer bias correction for MOCAP (use buffered rotation matrix) */ accel_bias_corr[0] = 0.0f; accel_bias_corr[1] = 0.0f; accel_bias_corr[2] = 0.0f; if (use_mocap) { accel_bias_corr[0] -= corr_mocap[0][0] * w_mocap_p * w_mocap_p; accel_bias_corr[1] -= corr_mocap[1][0] * w_mocap_p * w_mocap_p; accel_bias_corr[2] -= corr_mocap[2][0] * w_mocap_p * w_mocap_p; } /* transform error vector from NED frame to body frame */ for (int i = 0; i < 3; i++) { float c = 0.0f; for (int j = 0; j < 3; j++) { c += PX4_R(att.R, j, i) * accel_bias_corr[j]; } if (PX4_ISFINITE(c)) { acc_bias[i] += c * params.w_acc_bias * dt; } } /* accelerometer bias correction for flow and baro (assume that there is no delay) */ accel_bias_corr[0] = 0.0f; accel_bias_corr[1] = 0.0f; accel_bias_corr[2] = 0.0f; if (use_flow) { accel_bias_corr[0] -= corr_flow[0] * params.w_xy_flow; accel_bias_corr[1] -= corr_flow[1] * params.w_xy_flow; } if (use_lidar) { accel_bias_corr[2] -= corr_lidar * params.w_z_lidar * params.w_z_lidar; } else { accel_bias_corr[2] -= corr_baro * params.w_z_baro * params.w_z_baro; } /* transform error vector from NED frame to body frame */ for (int i = 0; i < 3; i++) { float c = 0.0f; for (int j = 0; j < 3; j++) { c += PX4_R(att.R, j, i) * accel_bias_corr[j]; } if (PX4_ISFINITE(c)) { acc_bias[i] += c * params.w_acc_bias * dt; } }
8.预计位置
/* inertial filter prediction for altitude */ if (can_estimate_xy) { { inertial_filter_predict(dt, x_est, acc[0]); inertial_filter_predict(dt, y_est, acc[1]); } inertial_filter_predict(dt, z_est, acc[2]);
函数解析
这里x_est、y_est、z_est通过float x[2]传进来来后,经过函数处理直接传回来给x_est、y_est、z_est(这里和C语法有点不同,但是不这么解释就说不过去了)
void inertial_filter_predict(float dt, float x[2], float acc) { if (isfinite(dt)) { if (!isfinite(acc)) { acc = 0.0f; } x[0] += x[1] * dt + acc * dt * dt / 2.0f; x[1] += acc * dt; } }
9.修正位置
/* inertial filter correction for altitude */ if (use_lidar) { inertial_filter_correct(corr_lidar, dt, z_est, 0, params.w_z_lidar); } else { inertial_filter_correct(corr_baro, dt, z_est, 0, params.w_z_baro); } if (use_gps_z) { epv = fminf(epv, gps.epv); inertial_filter_correct(corr_gps[2][0], dt, z_est, 0, w_z_gps_p); inertial_filter_correct(corr_gps[2][1], dt, z_est, 1, w_z_gps_v); } if (use_vision_z) { epv = fminf(epv, epv_vision); inertial_filter_correct(corr_vision[2][0], dt, z_est, 0, w_z_vision_p); } if (use_mocap) { epv = fminf(epv, epv_mocap); inertial_filter_correct(corr_mocap[2][0], dt, z_est, 0, w_mocap_p); } if (can_estimate_xy) { /* inertial filter correction for position */ if (use_flow) { eph = fminf(eph, eph_flow); inertial_filter_correct(corr_flow[0], dt, x_est, 1, params.w_xy_flow * w_flow); inertial_filter_correct(corr_flow[1], dt, y_est, 1, params.w_xy_flow * w_flow); } if (use_gps_xy) { eph = fminf(eph, gps.eph); inertial_filter_correct(corr_gps[0][0], dt, x_est, 0, w_xy_gps_p); inertial_filter_correct(corr_gps[1][0], dt, y_est, 0, w_xy_gps_p); if (gps.vel_ned_valid && t < gps.timestamp_velocity + gps_topic_timeout) { inertial_filter_correct(corr_gps[0][1], dt, x_est, 1, w_xy_gps_v); inertial_filter_correct(corr_gps[1][1], dt, y_est, 1, w_xy_gps_v); } } if (use_vision_xy) { eph = fminf(eph, eph_vision); inertial_filter_correct(corr_vision[0][0], dt, x_est, 0, w_xy_vision_p); inertial_filter_correct(corr_vision[1][0], dt, y_est, 0, w_xy_vision_p); if (w_xy_vision_v > MIN_VALID_W) { inertial_filter_correct(corr_vision[0][1], dt, x_est, 1, w_xy_vision_v); inertial_filter_correct(corr_vision[1][1], dt, y_est, 1, w_xy_vision_v); } } if (use_mocap) { eph = fminf(eph, eph_mocap); inertial_filter_correct(corr_mocap[0][0], dt, x_est, 0, w_mocap_p); inertial_filter_correct(corr_mocap[1][0], dt, y_est, 0, w_mocap_p); } } /* run terrain estimator */ terrain_estimator.predict(dt, &att, &sensor, &lidar);
函数解析 e是修正系数;dt周期时间;x[2]是2个float型成员的数组,x[0]是位置,x[1]是速度; i表示修正是位置还是速度,0是修正位置,1是修正速度;w是权重系数 这里x_est、y_est、z_est通过float x[2]传进来来后,经过函数处理直接传回来给x_est、y_est、z_est(这里和C语法有点不同,但是不这么解释就说不过去了)
void inertial_filter_correct(float e, float dt, float x[2], int i, float w) { if (isfinite(e) && isfinite(w) && isfinite(dt)) { float ewdt = e * w * dt; x[i] += ewdt; if (i == 0) { x[1] += w * ewdt; } } }
10.发布
/* publish local position */ local_pos.xy_valid = can_estimate_xy; local_pos.v_xy_valid = can_estimate_xy; local_pos.xy_global = local_pos.xy_valid && use_gps_xy; local_pos.z_global = local_pos.z_valid && use_gps_z; local_pos.x = x_est[0]; local_pos.vx = x_est[1]; local_pos.y = y_est[0]; local_pos.vy = y_est[1]; local_pos.z = z_est[0]; local_pos.vz = z_est[1]; local_pos.yaw = att.yaw; local_pos.dist_bottom_valid = dist_bottom_valid; local_pos.eph = eph; local_pos.epv = epv; if (local_pos.dist_bottom_valid) { local_pos.dist_bottom = dist_ground; local_pos.dist_bottom_rate = - z_est[1]; } local_pos.timestamp = t; orb_publish(ORB_ID(vehicle_local_position), vehicle_local_position_pub, &local_pos); if (local_pos.xy_global && local_pos.z_global) { /* publish global position */ global_pos.timestamp = t; global_pos.time_utc_usec = gps.time_utc_usec; double est_lat, est_lon; map_projection_reproject(&ref, local_pos.x, local_pos.y, &est_lat, &est_lon); global_pos.lat = est_lat; global_pos.lon = est_lon; global_pos.alt = local_pos.ref_alt - local_pos.z; global_pos.vel_n = local_pos.vx; global_pos.vel_e = local_pos.vy; global_pos.vel_d = local_pos.vz; global_pos.yaw = local_pos.yaw; global_pos.eph = eph; global_pos.epv = epv; if (terrain_estimator.is_valid()) { global_pos.terrain_alt = global_pos.alt - terrain_estimator.get_distance_to_ground(); global_pos.terrain_alt_valid = true; } else { global_pos.terrain_alt_valid = false; } global_pos.pressure_alt = sensor.baro_alt_meter[0]; if (vehicle_global_position_pub == NULL) { vehicle_global_position_pub = orb_advertise(ORB_ID(vehicle_global_position), &global_pos); } else { orb_publish(ORB_ID(vehicle_global_position), vehicle_global_position_pub, &global_pos); } }
常用传感器
气压+加速度=高度(此部分摘自http://blog.sina.com.cn/s/blog_8fe4f2f40102wo50.html)
1. 变量初始化。
float z_est[2] = { 0.0f, 0.0f }; // z轴的高度、速度 float acc[] = { 0.0f, 0.0f, 0.0f }; //地理坐标系(NED)的加速度数据 float acc_bias[] = { 0.0f, 0.0f, 0.0f }; //机体坐标系下的加速度偏移量 float corr_baro = 0.0f; // 气压计校正系数
2. 计算气压计高度的零点偏移,主要是取200个数据求平均。
baro_offset += sensor.baro_alt_meter; baro_offset /= (float) baro_init_cnt;
3. 将传感器获取的机体加速度数据转换到地理坐标系下。
加速度数据要先去除偏移量;
sensor.accelerometer_m_s2[0] -=acc_bias[0]; sensor.accelerometer_m_s2[1] -= acc_bias[1]; sensor.accelerometer_m_s2[2] -=acc_bias[2];
然后转换坐标系;
acc[i] += PX4_R(att.R, i, j) *sensor.accelerometer_m_s2[j];
地理坐标系下的z轴加速度是有重力加速度的,因此补偿上去。
acc[2] += CONSTANTS_ONE_G;
4. 计算气压计的校正系数
corr_baro = baro_offset -sensor.baro_alt_meter - z_est[0];
5. 加速度偏移向量校正
accel_bias_corr[2] -= corr_baro *params.w_z_baro * params.w_z_baro;
6. 将偏移向量转换到机体坐标系
c += PX4_R(att.R, j, i) *accel_bias_corr[j];
acc_bias[i] += c * params.w_acc_bias * dt;
7. 加速度推算高度
inertial_filter_predict(dt, z_est, acc[2]);
8. 气压计校正系数进行校正
inertial_filter_correct(corr_baro, dt,z_est, 0, params.w_z_baro);
光流
orb_copy(ORB_ID(optical_flow), optical_flow_sub, &flow); if (fabs(rates_setpoint.pitch) < rate_threshold) { //warnx("[inav] test ohne comp"); flow_ang[0] = (flow.pixel_flow_x_integral / (float)flow.integration_timespan * 1000000.0f) * params.flow_k;//for now the flow has to be scaled (to small) } else { //warnx("[inav] test mit comp"); //calculate flow [rad/s] and compensate for rotations (and offset of flow-gyro) flow_ang[0] = ((flow.pixel_flow_x_integral - flow.gyro_x_rate_integral) / (float)flow.integration_timespan * 1000000.0f + gyro_offset_filtered[0]) * params.flow_k;//for now the flow has to be scaled (to small) } if (fabs(rates_setpoint.roll) < rate_threshold) { flow_ang[1] = (flow.pixel_flow_y_integral / (float)flow.integration_timespan * 1000000.0f) * params.flow_k;//for now the flow has to be scaled (to small) } else { //calculate flow [rad/s] and compensate for rotations (and offset of flow-gyro) flow_ang[1] = ((flow.pixel_flow_y_integral - flow.gyro_y_rate_integral) / (float)flow.integration_timespan * 1000000.0f + gyro_offset_filtered[1]) * params.flow_k;//for now the flow has to be scaled (to small) }
得出flow_ang[]
float dist_bottom = lidar.current_distance; float flow_dist = dist_bottom;所以说光流的距离来自lidar,也就是超声波
gyro_offset_filtered[0] = flow_gyrospeed_filtered[0] - att_gyrospeed_filtered[0]; gyro_offset_filtered[1] = flow_gyrospeed_filtered[1] - att_gyrospeed_filtered[1]; gyro_offset_filtered[2] = flow_gyrospeed_filtered[2] - att_gyrospeed_filtered[2]; flow_gyrospeed[0] = flow.gyro_x_rate_integral / (float)flow.integration_timespan * 1000000.0f; flow_gyrospeed[1] = flow.gyro_y_rate_integral / (float)flow.integration_timespan * 1000000.0f; flow_gyrospeed[2] = flow.gyro_z_rate_integral / (float)flow.integration_timespan * 1000000.0f; yaw_comp[0] = - params.flow_module_offset_y * (flow_gyrospeed[2] - gyro_offset_filtered[2]); yaw_comp[1] = params.flow_module_offset_x * (flow_gyrospeed[2] - gyro_offset_filtered[2]);
PX4_R(att.R, i, j)的意思是(att.R[i* 3 + j])
if (fabs(rates_setpoint.yaw) < rate_threshold) { flow_m[0] = -flow_ang[0] * flow_dist; flow_m[1] = -flow_ang[1] * flow_dist; } else { flow_m[0] = -flow_ang[0] * flow_dist - yaw_comp[0] * params.flow_k; flow_m[1] = -flow_ang[1] * flow_dist - yaw_comp[1] * params.flow_k; }
得出flow_m[]光流测量向量
flow_m[2] = z_est[1]; for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { flow_v[i] += PX4_R(att.R, i, j) * flow_m[j]; } } corr_flow[0] = flow_v[0] - x_est[1]; corr_flow[1] = flow_v[1] - y_est[1];
得出corr_flow[]
accel_bias_corr[0] -= corr_flow[0] * params.w_xy_flow; accel_bias_corr[1] -= corr_flow[1] * params.w_xy_flow;
得出accel_bias_corr[]
PX4_R(att.R, i, j)的意思是(att.R[i* 3 + j])
/* transform error vector from NED frame to body frame */ for (int i = 0; i < 3; i++) { float c = 0.0f; for (int j = 0; j < 3; j++) { c += PX4_R(att.R, j, i) * accel_bias_corr[j]; } if (PX4_ISFINITE(c)) { acc_bias[i] += c * params.w_acc_bias * dt; } }
得出acc_bias[]
inertial_filter_predict(dt, x_est, acc[0]); inertial_filter_predict(dt, y_est, acc[1]);
得出x_est、y_est
inertial_filter_correct(corr_flow[0], dt, x_est, 1, params.w_xy_flow * w_flow); inertial_filter_correct(corr_flow[1], dt, y_est, 1, params.w_xy_flow * w_flow);
得出修正后的x_est、y_est
GPS
orb_copy(ORB_ID(vehicle_gps_position), vehicle_gps_position_sub, &gps); float alt = gps.alt * 1e-3; local_pos.ref_alt = alt + z_est[0]; est_buf[buf_ptr][0][0] = x_est[0]; est_buf[buf_ptr][0][1] = x_est[1]; est_buf[buf_ptr][1][0] = y_est[0]; est_buf[buf_ptr][1][1] = y_est[1]; est_buf[buf_ptr][2][0] = z_est[0]; est_buf[buf_ptr][2][1] = z_est[1]; map_projection_project(&ref, lat, lon, &(gps_proj[0]), &(gps_proj[1])); corr_gps[0][0] = gps_proj[0] - est_buf[est_i][0][0]; corr_gps[1][0] = gps_proj[1] - est_buf[est_i][1][0]; corr_gps[2][0] = local_pos.ref_alt - alt - est_buf[est_i][2][0]; corr_gps[0][1] = gps.vel_n_m_s - est_buf[est_i][0][1]; corr_gps[1][1] = gps.vel_e_m_s - est_buf[est_i][1][1]; corr_gps[2][1] = gps.vel_d_m_s - est_buf[est_i][2][1];
得出corr_gps[][]
bool use_gps_xy = ref_inited && gps_valid && params.w_xy_gps_p > MIN_VALID_W; accel_bias_corr[0] -= corr_gps[0][0] * w_xy_gps_p * w_xy_gps_p; accel_bias_corr[0] -= corr_gps[0][1] * w_xy_gps_v; accel_bias_corr[1] -= corr_gps[1][0] * w_xy_gps_p * w_xy_gps_p; accel_bias_corr[1] -= corr_gps[1][1] * w_xy_gps_v; accel_bias_corr[2] -= corr_gps[2][0] * w_z_gps_p * w_z_gps_p; accel_bias_corr[2] -= corr_gps[2][1] * w_z_gps_v;
得出accel_bias_corr[]
/* push current rotation matrix to buffer */ memcpy(R_buf[buf_ptr], att.R, sizeof(att.R)); /* save rotation matrix at this moment */ memcpy(R_gps, R_buf[est_i], sizeof(R_gps)); /* transform error vector from NED frame to body frame */ for (int i = 0; i < 3; i++) { float c = 0.0f; for (int j = 0; j < 3; j++) { c += R_gps[j][i] * accel_bias_corr[j]; } if (PX4_ISFINITE(c)) { acc_bias[i] += c * params.w_acc_bias * dt; } }
得出acc_bias[]
// gps[a][b],a=0则为x方向,a=1则为y方向,a=2则为z方向 //b=0则为位置,b=1则为速度 inertial_filter_predict(dt, z_est, acc[2]);
得出z_est
inertial_filter_correct(corr_gps[2][0], dt, z_est, 0, w_z_gps_p); inertial_filter_correct(corr_gps[2][1], dt, z_est, 1, w_z_gps_v);
得出修正后的z_est
inertial_filter_predict(dt, x_est, acc[0]); inertial_filter_predict(dt, y_est, acc[1]); inertial_filter_correct(corr_gps[0][0], dt, x_est, 0, w_xy_gps_p); inertial_filter_correct(corr_gps[1][0], dt, y_est, 0, w_xy_gps_p); inertial_filter_correct(corr_gps[0][1], dt, x_est, 1, w_xy_gps_v); inertial_filter_correct(corr_gps[1][1], dt, y_est, 1, w_xy_gps_v);
pixhawk position_estimator_inav.cpp思路整理及数据流
标签:
原文地址:http://blog.csdn.net/czyv587/article/details/51884052