码迷,mamicode.com
首页 > 其他好文 > 详细

[转载]矩阵求导公式

时间:2016-07-14 01:51:31      阅读:3792      评论:0      收藏:0      [点我收藏+]

标签:

原文地址:矩阵求导公式【转】作者:三寅
今天推导公式,发现居然有对矩阵的求导,狂汗--完全不会。不过还好网上有人总结了。吼吼,赶紧搬过来收藏备份。

基本公式:
Y = A * X --> DY/DX = A‘
Y = X * A --> DY/DX = A
Y = A‘ * X * B --> DY/DX = A * B‘
Y = A‘ * X‘ * B --> DY/DX = B * A‘

1. 矩阵Y对标量x求导:

相当于每个元素求导数后转置一下,注意M×N矩阵求导后变成N×M了

Y = [y(ij)] --> dY/dx = [dy(ji)/dx]

2. 标量y对列向量X求导:

注意与上面不同,这次括号内是求偏导,不转置,对N×1向量求导后还是N×1向量

y = f(x1,x2,..,xn) --> dy/dX = (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)‘

3. 行向量Y‘对列向量X求导:

注意1×M向量对N×1向量求导后是N×M矩阵。

将Y的每一列对X求偏导,将各列构成一个矩阵。

重要结论:

dX‘/dX = I

d(AX)‘/dX = A‘

4. 列向量Y对行向量X’求导:

转化为行向量Y’对列向量X的导数,然后转置。

注意M×1向量对1×N向量求导结果为M×N矩阵。

dY/dX‘ = (dY‘/dX)‘

5. 向量积对列向量X求导运算法则:

注意与标量求导有点不同。

d(UV‘)/dX = (dU/dX)V‘ + U(dV‘/dX)

d(U‘V)/dX = (dU‘/dX)V + (dV‘/dX)U‘

重要结论:

d(X‘A)/dX = (dX‘/dX)A + (dA/dX)X‘ = IA + 0X‘ = A

d(AX)/dX‘ = (d(X‘A‘)/dX)‘ = (A‘)‘ = A

d(X‘AX)/dX = (dX‘/dX)AX + (d(AX)‘/dX)X = AX + A‘X

6. 矩阵Y对列向量X求导:

将Y对X的每一个分量求偏导,构成一个超向量。

注意该向量的每一个元素都是一个矩阵。

7. 矩阵积对列向量求导法则:

d(uV)/dX = (du/dX)V + u(dV/dX)

d(UV)/dX = (dU/dX)V + U(dV/dX)

重要结论:

d(X‘A)/dX = (dX‘/dX)A + X‘(dA/dX) = IA + X‘0 = A

8. 标量y对矩阵X的导数:

类似标量y对列向量X的导数,

把y对每个X的元素求偏导,不用转置。

dy/dX = [ Dy/Dx(ij) ]

重要结论:

y = U‘XV = ΣΣu(i)x(ij)v(j) 于是 dy/dX = [u(i)v(j)] = UV‘

y = U‘X‘XU 则 dy/dX = 2XUU‘

y = (XU-V)‘(XU-V) 则 dy/dX = d(U‘X‘XU - 2V‘XU + V‘V)/dX = 2XUU‘ - 2VU‘ + 0 = 2(XU-V)U‘

9. 矩阵Y对矩阵X的导数:

将Y的每个元素对X求导,然后排在一起形成超级矩阵。

 

10.乘积的导数

d(f*g)/dx=(df‘/dx)g+(dg/dx)f‘

结论

d(x‘Ax)=(d(x‘‘)/dx)Ax+(d(Ax)/dx)(x‘‘)=Ax+A‘x   (注意:‘‘是表示两次转置)

 

 

比较详细点的如下:

 

 技术分享


技术分享

技术分享

技术分享

技术分享

 

http://lzh21cen.blog.163.com/blog/static/145880136201051113615571/

http://hi.baidu.com/wangwen926/blog/item/eb189bf6b0fb702b720eec94.html

 

其他参考:

 

Contents

  • Notation
  • Derivatives of Linear Products
  • Derivatives of Quadratic Products

Notation

  • d/dx (y) is a vector whose (i) element is dy(i)/dx
  • d/dx (y) is a vector whose (i) element is dy/dx(i)
  • d/dx (yT) is a matrix whose (i,j) element is dy(j)/dx(i)
  • d/dx (Y) is a matrix whose (i,j) element is dy(i,j)/dx
  • d/dX (y) is a matrix whose (i,j) element is dy/dx(i,j)

Note that the Hermitian transpose is not used because complex conjugates are not analytic.

In the expressions below matrices and vectors ABC do not depend on X.

Derivatives of Linear Products

  • d/dx (AYB) =A * d/dx (Y) * B
    • d/dx (Ay) =A * d/dx (y)
  • d/dx (xTA) =A
    • d/dx (xT) =I
    • d/dx (xTa) = d/dx (aTx) = a
  • d/dX (aTXb) = abT
    • d/dX (aTXa) = d/dX (aTXTa) = aaT
  • d/dX (aTXTb) = baT
  • d/dx (YZ) =Y * d/dx (Z) + d/dx (Y) * Z

Derivatives of Quadratic Products

  • d/dx (Ax+b)TC(Dx+e) = ATC(Dx+e) + DTCT(Ax+b)
    • d/dx (xTCx) = (C+CT)x
      • [C: symmetric]: d/dx (xTCx) = 2Cx
      • d/dx (xTx) = 2x
    • d/dx (Ax+b)T (Dx+e) = AT (Dx+e) + DT (Ax+b)
      • d/dx (Ax+b)T (Ax+b) = 2AT (Ax+b)
    • [C: symmetric]: d/dx (Ax+b)TC(Ax+b) = 2ATC(Ax+b)
  • d/dX (aTXTXb) = X(abT + baT)
    • d/dX (aTXTXa) = 2XaaT
  • d/dX (aTXTCXb) = CTXabT + CXbaT
    • d/dX (aTXTCXa) = (C + CT)XaaT
    • [C:Symmetric] d/dX (aTXTCXa) = 2CXaaT
  • d/dX ((Xa+b)TC(Xa+b)) = (C+CT)(Xa+b)aT

Derivatives of Cubic Products

  • d/dx (xTAxxT) = (A+AT)xxT+xTAxI

Derivatives of Inverses

  • d/dx (Y-1) = -Y-1d/dx (Y)Y-1

Derivative of Trace

Note: matrix dimensions must result in an n*n argument for tr().

  • d/dX (tr(X)) = I
  • d/dX (tr(Xk)) =k(Xk-1)T
  • d/dX (tr(AXk)) = SUMr=0:k-1(XrAXk-r-1)T
  • d/dX (tr(AX-1B)) = -(X-1BAX-1)T
    • d/dX (tr(AX-1)) =d/dX (tr(X-1A)) = -X-TATX-T
  • d/dX (tr(ATXBT)) = d/dX (tr(BXTA)) = AB
    • d/dX (tr(XAT)) = d/dX (tr(ATX)) =d/dX (tr(XTA)) = d/dX (tr(AXT)= A
  • d/dX (tr(AXBXT)) = ATXBT + AXB
    • d/dX (tr(XAXT)) = X(A+AT)
    • d/dX (tr(XTAX)) = XT(A+AT)
    • d/dX (tr(AXTX)) = (A+AT)X
  • d/dX (tr(AXBX)) = ATXTBT + BTXTAT
  • [C:symmetric] d/dX (tr((XTCX)-1A) = d/dX (tr(A (XTCX)-1) = -(CX(XTCX)-1)(A+AT)(XTCX)-1
  • [B,C:symmetric] d/dX (tr((XTCX)-1(XTBX)) = d/dX (tr( (XTBX)(XTCX)-1) = -2(CX(XTCX)-1)XTBX(XTCX)-1 + 2BX(XTCX)-1

Derivative of Determinant

Note: matrix dimensions must result in an n*n argument for det().

  • d/dX (det(X)) = d/dX (det(XT)) = det(X)*X-T
    • d/dX (det(AXB)) = det(AXB)*X-T
    • d/dX (ln(det(AXB))) = X-T
  • d/dX (det(Xk)) = k*det(Xk)*X-T
    • d/dX (ln(det(Xk))) = kX-T
  • [Real] d/dX (det(XTCX)) = det(XTCX)*(C+CT)X(XTCX)-1
    • [CReal,Symmetric] d/dX (det(XTCX)) = 2det(XTCX)* CX(XTCX)-1
  • [CReal,Symmetricc] d/dX (ln(det(XTCX))) = 2CX(XTCX)-1

Jacobian

If y is a function of x, then dyT/dx is the Jacobian matrix of y with respect to x.

Its determinant, |dyT/dx|, is the Jacobian of y with respect to x and represents the ratio of the hyper-volumes dy and dx. The Jacobian occurs when changing variables in an integration: Integral(f(y)dy)=Integral(f(y(x)) |dyT/dx| dx).

Hessian matrix

If f is a function of x then the symmetric matrix d2f/dx2 = d/dxT(df/dx) is the Hessian matrix of f(x). A value of x for which df/dx = 0 corresponds to a minimum, maximum or saddle point according to whether the Hessian is positive definite, negative definite or indefinite.

  • d2/dx2 (aTx) = 0
  • d2/dx2 (Ax+b)TC(Dx+e) = ATCD + DTCTA
    • d2/dx2 (xTCx) = C+CT
      • d2/dx2 (xTx) = 2I
    • d2/dx2 (Ax+b)T (Dx+e) = ATD + DTA
      • d2/dx2 (Ax+b)T (Ax+b) = 2ATA
    • [C: symmetric]: d2/dx2 (Ax+b)TC(Ax+b) = 2ATCA  
http://www.psi.toronto.edu/matrix/calculus.html

http://www.stanford.edu/~dattorro/matrixcalc.pdf

http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.AppD.d/IFEM.AppD.pdf

http://www4.ncsu.edu/~pfackler/MatCalc.pdf

http://center.uvt.nl/staff/magnus/wip12.pdf

 

补充

矩阵求导好像读书的时候都没学过,因为讲矩阵的课程上不讲求导,讲求导的课又不提矩阵。如果从事机器学习方面的工作,那就一定会遇到矩阵求导的东西。维基百科上:http://en.wikipedia.org/wiki/Matrix_calculus , 根据Y与X的不同类型(实值,向量,矩阵),给出了具体的求导公式,以及一堆相关的公式,查起来都费劲。
技术分享

其实在实际的机器学习工作中,最常用到的就是实值函数y对向量X的求导,定义如下(其实就是y对向量X的每一个元素求导):
技术分享

实值函数对矩阵X求导也类似:
技术分享

因为机器学习(这里指的是有监督的机器学习)的一般套路是给定输入X,选择一个模型f作为决策函数,由f(X)预测出Y‘。而得到f的参数θ(往往是向量),需要定义一个loss函数(一般都是实值函数),描述当前f预测值Y‘与实际的Y值的接近程度。模型学习的过程就是求使得 loss函数 L(f(X),Y)最小的参数θ。这是一个最优化问题,实际应用中都是用和梯度相关的最优化方法,如梯度下降,共轭梯度,拟牛顿法等等。

其实只要掌握上面这个公式,就能搞定很多问题了。

为了方便推导,下面列出一些机器学习中常用的求导公式,其中andrew ng那一套用矩阵迹的方法还是挺不错的,矩阵的迹也是实值的,而一个实数的迹等于其本身,实际工作中可以将loss函数转化成迹,然后在求导,可能会简化推导的步骤。

技术分享

以上只是一些最基本的公式,能够解决一些问题,主要是减少大家对矩阵求导的恐惧感。关于矩阵方面的更多信息可以参考上面的wiki链接以及《Matrix cookbook》(感谢 @王树森 CS 推荐)。

[转载]矩阵求导公式

标签:

原文地址:http://www.cnblogs.com/misszhu-home/p/5668410.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!