标签:hadoop 气象分析
1.下载气象数据集 wget -r -c 查看数据集 [root@hadoop-master 2008]# ls 010030-99999-2008.gz 010231-99999-2008.gz 010460-99999-2008.gz 010570-99999-2008.gz 010881-99999-2008.gz 010070-99999-2008.gz 010260-99999-2008.gz 010490-99999-2008.gz 010750-99999-2008.gz 010883-99999-2008.gz 010150-99999-2008.gz 010330-99999-2008.gz 010520-99999-2008.gz 010780-99999-2008.gz 010890-99999-2008.gz 010230-99999-2008.gz 010450-99999-2008.gz 010550-99999-2008.gz 010830-99999-2008.gz 2.将数据解压并导入到example文件中 [root@hadoop-master 2008]# zcat *.gz > example 查看文件是否正确 [root@hadoop-master 2008]# tail -10 example 0101010980999992008031013004+70367+031100FM-12+001599999V0201801N006019999999N9999999N1-00081-00291099591ADDMA1999999099411MD1710101+9999REMSYN060AAXX 10131 01098 46/// /1806 11008 21029 39941 49959 57010; 0101010980999992008031014004+70367+031100FM-12+001599999V0201901N006019999999N9999999N1-00071-00241099601ADDMA1999999099411MD1710051+9999REMSYN060AAXX 10141 01098 46/// /1906 11007 21024 39941 49960 57005; 0171010980999992008031015004+70367+031100FM-12+001599999V0202201N004010042019N0060001N1-00151-00261099611ADDAY171031AY221031GF107991061071004501021999MA1999999099431MD1510021+9999MW1221REMSYN082AAXX 10151 01098 41456 72204 11015 21026 39943 49961 55002 72272 8672/ 333 4////; 0101010980999992008031016004+70367+031100FM-12+001599999V0202101N005019999999N9999999N1-00121-00211099581ADDMA1999999099401MD1010011+9999REMSYN060AAXX 10161 01098 46/// /2105 11012 21021 39940 49958 50001; 0101010980999992008031017004+70367+031100FM-12+001599999V0202201N004019999999N9999999N1-00131-00231099591ADDMA1999999099411MD1410001+9999REMSYN060AAXX 10171 01098 46/// /2204 11013 21023 39941 49959 54000; 0213010980999992008031018004+70367+031100FM-12+001599999V0201901N004010042019N0150001N1-00061-00151099601ADDAA112000021AY171061AY221061GF107991051071004501021999KA1120M-00061MA1999999099421MD1510011+9999MW1701REMSYN100AAXX 10181 01098 11465 71904 11006 21015 39942 49960 55001 69912 77072 8572/ 333 11006 4//// 91107; 0101010980999992008031019004+70367+031100FM-12+001599999V0201901N006019999999N9999999N1+00001-00101099591ADDMA1999999099411MD1210011+9999REMSYN060AAXX 10191 01098 46/// /1906 10000 21010 39941 49959 52001; 0101010980999992008031020004+70367+031100FM-12+001599999V0201801N006019999999N9999999N1+00041-00091099621ADDMA1999999099441MD1210031+9999REMSYN060AAXX 10201 01098 46/// /1806 10004 21009 39944 49962 52003; 0171010980999992008031021004+70367+031100FM-12+001599999V0201901N005010042019N0300001N1+00071-00061099621ADDAY171031AY221031GF107991071071004501999999MA1999999099441MD1210021+9999MW1021REMSYN082AAXX 10211 01098 41480 71905 10007 21006 39944 49962 52002 70272 877// 333 4////; 0101010980999992008031022004+70367+031100FM-12+001599999V0201901N005019999999N9999999N1+00091-0004 3.将数据集导入到hadoop的in目录的test文件中 /root/hadoop-1.1.2/bin/hadoop fs -put ./example ./in/test 4.编写MapReduce程序 cd /root/hadoop-1.1.2/myclass [root@hadoop-master myclass]# cat MaxTemperature.java // cc MaxTemperature Application to find the maximum temperature in the weather dataset // vv MaxTemperature import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MaxTemperature { public static void main(String[] args) throws Exception { if (args.length != 2) { System.err.println("Usage: MaxTemperature <input path> <output path>"); System.exit(-1); } Job job = new Job(); job.setJarByClass(MaxTemperature.class); job.setJobName("Max temperature"); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(MaxTemperatureMapper.class); job.setReducerClass(MaxTemperatureReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); System.exit(job.waitForCompletion(true) ? 0 : 1); } } // ^^ MaxTemperature [root@hadoop-master myclass]# cat MaxTemperatureMapper.java // cc MaxTemperatureMapper Mapper for maximum temperature example // vv MaxTemperatureMapper import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class MaxTemperatureMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private static final int MISSING = 9999; @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String year = line.substring(15, 19); int airTemperature; if (line.charAt(87) == ‘+‘) { // parseInt doesn‘t like leading plus signs airTemperature = Integer.parseInt(line.substring(88, 92)); } else { airTemperature = Integer.parseInt(line.substring(87, 92)); } String quality = line.substring(92, 93); if (airTemperature != MISSING && quality.matches("[01459]")) { context.write(new Text(year), new IntWritable(airTemperature)); } } } // ^^ MaxTemperatureMapper [root@hadoop-master myclass]# cat MaxTemperatureMapper.java // cc MaxTemperatureMapper Mapper for maximum temperature example // vv MaxTemperatureMapper import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class MaxTemperatureMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private static final int MISSING = 9999; @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String year = line.substring(15, 19); int airTemperature; if (line.charAt(87) == ‘+‘) { // parseInt doesn‘t like leading plus signs airTemperature = Integer.parseInt(line.substring(88, 92)); } else { airTemperature = Integer.parseInt(line.substring(87, 92)); } String quality = line.substring(92, 93); if (airTemperature != MISSING && quality.matches("[01459]")) { context.write(new Text(year), new IntWritable(airTemperature)); } } } // ^^ MaxTemperatureMapper [root@hadoop-master myclass]# cat MaxTemperatureReducer.java // cc MaxTemperatureReducer Reducer for maximum temperature example // vv MaxTemperatureReducer import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class MaxTemperatureReducer extends Reducer<Text, IntWritable, Text, IntWritable> { @Override public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int maxValue = Integer.MIN_VALUE; for (IntWritable value : values) { maxValue = Math.max(maxValue, value.get()); } context.write(key, new IntWritable(maxValue)); } } // ^^ MaxTemperatureReducer 4.编译程序 javac -classpath ../hadoop-core-1.1.2.jar *.java 查看 [root@hadoop-master myclass]# ls MaxTemperature.class MaxTemperatureMapper.class MaxTemperatureReducer.class MaxTemperature.java MaxTemperatureMapper.java MaxTemperatureReducer.java 5.制作jar包 [root@hadoop-master myclass]# jar cvf ../MaxTemperature.jar *.class added manifest adding: MaxTemperature.class(in = 1413) (out= 799)(deflated 43%) adding: MaxTemperatureMapper.class(in = 1876) (out= 805)(deflated 57%) adding: MaxTemperatureReducer.class(in = 1687) (out= 717)(deflated 57%) 删除类文件:rm -rf *.class 6.运行程序 分析上述导入文件至in/test的数据集,并将分析结果导出到./out_result中 [root@hadoop-master hadoop-1.1.2]# ./bin/hadoop jar MaxTemperature.jar MaxTemperature ./in/test ./out_result 16/07/13 23:07:54 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. 16/07/13 23:07:55 INFO input.FileInputFormat: Total input paths to process : 1 16/07/13 23:07:55 INFO util.NativeCodeLoader: Loaded the native-hadoop library 16/07/13 23:07:55 WARN snappy.LoadSnappy: Snappy native library not loaded 16/07/13 23:07:59 INFO mapred.JobClient: Running job: job_201607131558_0001 16/07/13 23:08:00 INFO mapred.JobClient: map 0% reduce 0% 16/07/13 23:08:23 INFO mapred.JobClient: map 100% reduce 0% 16/07/13 23:08:38 INFO mapred.JobClient: map 100% reduce 100% 16/07/13 23:08:40 INFO mapred.JobClient: Job complete: job_201607131558_0001 16/07/13 23:08:40 INFO mapred.JobClient: Counters: 29 16/07/13 23:08:40 INFO mapred.JobClient: Map-Reduce Framework 16/07/13 23:08:40 INFO mapred.JobClient: Spilled Records=300506 16/07/13 23:08:40 INFO mapred.JobClient: Map output materialized bytes=1652789 16/07/13 23:08:40 INFO mapred.JobClient: Reduce input records=150253 16/07/13 23:08:40 INFO mapred.JobClient: Virtual memory (bytes) snapshot=3868651520 16/07/13 23:08:40 INFO mapred.JobClient: Map input records=150656 16/07/13 23:08:40 INFO mapred.JobClient: SPLIT_RAW_BYTES=108 16/07/13 23:08:40 INFO mapred.JobClient: Map output bytes=1352277 16/07/13 23:08:40 INFO mapred.JobClient: Reduce shuffle bytes=1652789 16/07/13 23:08:40 INFO mapred.JobClient: Physical memory (bytes) snapshot=295931904 16/07/13 23:08:40 INFO mapred.JobClient: Reduce input groups=1 16/07/13 23:08:40 INFO mapred.JobClient: Combine output records=0 16/07/13 23:08:40 INFO mapred.JobClient: Reduce output records=1 16/07/13 23:08:40 INFO mapred.JobClient: Map output records=150253 16/07/13 23:08:40 INFO mapred.JobClient: Combine input records=0 16/07/13 23:08:40 INFO mapred.JobClient: CPU time spent (ms)=12220 16/07/13 23:08:40 INFO mapred.JobClient: Total committed heap usage (bytes)=177016832 16/07/13 23:08:40 INFO mapred.JobClient: File Input Format Counters 16/07/13 23:08:40 INFO mapred.JobClient: Bytes Read=35197493 16/07/13 23:08:40 INFO mapred.JobClient: FileSystemCounters 16/07/13 23:08:40 INFO mapred.JobClient: HDFS_BYTES_READ=35197601 16/07/13 23:08:40 INFO mapred.JobClient: FILE_BYTES_WRITTEN=3409028 16/07/13 23:08:40 INFO mapred.JobClient: FILE_BYTES_READ=1652789 16/07/13 23:08:40 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=9 16/07/13 23:08:40 INFO mapred.JobClient: Job Counters 16/07/13 23:08:40 INFO mapred.JobClient: Launched map tasks=1 16/07/13 23:08:40 INFO mapred.JobClient: Launched reduce tasks=1 16/07/13 23:08:40 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=12976 16/07/13 23:08:40 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0 16/07/13 23:08:40 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=18769 16/07/13 23:08:40 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0 16/07/13 23:08:40 INFO mapred.JobClient: Data-local map tasks=1 16/07/13 23:08:40 INFO mapred.JobClient: File Output Format Counters 16/07/13 23:08:40 INFO mapred.JobClient: Bytes Written=9 7. 查看结果 [root@hadoop-master hadoop-1.1.2]# ./bin/hadoop fs -ls ./out_result Found 3 items -rw-r--r-- 3 root supergroup 0 2016-07-13 23:08 /user/root/out_result/_SUCCESS drwxr-xr-x - root supergroup 0 2016-07-13 23:08 /user/root/out_result/_logs -rw-r--r-- 3 root supergroup 9 2016-07-13 23:08 /user/root/out_result/part-r-00000 log文件为日志,part文件为结果 查看part文件内容: [root@hadoop-master hadoop-1.1.2]# ./bin/hadoop fs -cat ./out_result/part-r-00000 2008 290
本文出自 “杜先生” 博客,请务必保留此出处http://duxiansheng.blog.51cto.com/11062970/1826395
【大数据】Hadoop 成长之路 (二) 利用Hadoop分析气象数据集
标签:hadoop 气象分析
原文地址:http://duxiansheng.blog.51cto.com/11062970/1826395