标签:
分析:
From:http://blog.csdn.net/linhuanmars/article/details/22706553
这是一道具体问题的题目,brute force的方法比较容易想到,就是从每一个站开始,一直走一圈,累加过程中的净余的油量,看它是不是有出现负的,如果有则失败,从下一个站开始重新再走一圈;如果没有负的出现,则这个站可以作为起始点,成功。可以看出每次需要扫描一圈,对每个站都要做一次扫描,所以时间复杂度是O(n^2)。代码比较直接,这里就不列举了。
接下来说说如何提高这个算法。方法主要思想是把这个圈划分成一个个的负序列,以及一个正序列(如果存在的话)。从任意一个站出发,我们可以累加油的净余量,如果出现负的,序列结束,开启一个新的,并且证明旧的这个序列的起点不能作为起点,因为会出现负油量,不能继续前进。下面我们证明
不仅这个负序列的起点不能作为起点,负序列中的任意一点都不能作为起点。
证明:假设我们取定负序列中的一个站作为起点,因为一个序列一旦遇到负的净余量就会结束并且开启新的,那么说明在这个起点前的累加结果必然是正数(否则会结束这个序列,则前面不会是这个序列的一部分)。如此我们从当前序列出发必然会使走到序列终点时负的油量更大,本来已经是负的,所以不能去负序列的任意一个结点作为起点。
根据上面的划分方式,我们会把圈分成一段段的序列,而且其中最多只有一个正序列,那就是绕一圈回到起点的那个序列(当然也有可能整个圈是一个正序列,就是油量一直为正,那么我们测的开始点就可以作为起点了)。接下来我们证明
如果将全部油量累计起来,总量为正,那么一定能找到一个起点,使得可以走完一圈,也就是一定有解。
证明:按照我们之前的划分,整个圈会被划分成有累积量为s1, s2, ..., sk 的负序列,以及一个正序列拥有油量sp(这里正序列一定存在因为全部累加和是正的,如果全是负序列那么结果不会是正的)。而且我们知道s1+s2+...+sk+sp>0,也就是说sp>-s1-s2-...-sk。换句话说,如果我们从sp对应的站的起点出发,在sp对应的序列会一直是正的,并且,当他走到负序列时,因为sp的正油量大于所有负油量的总和,所以累加油量会一直正,完整整个圈的行驶。这证明了只要累加油量是正的,一定能找到一个起点来完成任务。
根据上面的两个命题,我们可以来实现代码,需要维护两个量,一个是总的累积油量total,另一个是当前序列的累计油量remaining,如果出现负的,则切换起点,并且将remaining置0。总共是需要扫描所有站一次,时间复杂度是O(n)。而只需要两个额外变量,空间复杂度是O(1)。代码如下:
1 public class Solution { 2 /** 3 * @param gas: an array of integers 4 * @param cost: an array of integers 5 * @return: an integer 6 */ 7 public int canCompleteCircuit(int[] gas, int[] cost) { 8 // write your code here 9 10 int startIndex = 0; 11 int remaining = gas[0] - cost[0]; 12 int total = remaining; 13 14 for (int i = 1; i < gas.length; i++) { 15 if (remaining < 0 || remaining + gas[i] - cost[i] < 0) { 16 startIndex = i; 17 remaining = gas[i] - cost[i]; 18 } else { 19 remaining += gas[i] - cost[i]; 20 } 21 22 total += gas[i] - cost[i]; 23 } 24 25 if (total >= 0) return startIndex; 26 return -1; 27 } 28 }
标签:
原文地址:http://www.cnblogs.com/beiyeqingteng/p/5672224.html