构图方法:
注意题目中的边为无向边。新建源点s 和 汇点t 每两条道路连一条容量为1,费用为w的边。s到1连一条容量为1,费用为0 的边,n到 t 连一条容量为1,费用为0 的边,求最大流。
#include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <algorithm> #include <queue> #include <vector> #include <cmath> #define LL long long using namespace std; const int maxn = 10000 + 10; const int INF = 1000000000; struct Edge { int from,to,cap,flow,cost; Edge(int u,int v,int c,int f,int w):from(u),to(v),cap(c),flow(f),cost(w) { } }; int n , m; vector<Edge>edges; vector<int>G[maxn]; int inq[maxn]; int d[maxn]; int p[maxn]; int a[maxn]; void init() { for(int i=0;i<=n+1;i++) G[i].clear(); edges.clear(); } void AddEdge(int from,int to,int cap,int cost) { edges.push_back(Edge(from,to,cap,0,cost)); edges.push_back(Edge(to,from,0,0,-cost)); int M = edges.size(); G[from].push_back(M-2); G[to].push_back(M-1); } bool SPFA(int s,int t,int& flow,LL& cost) { for(int i=0;i<=n+1;i++) d[i] = INF; memset(inq,0,sizeof(inq)); d[s] = 0;inq[s] = 1;p[s] = 0;a[s] = INF; queue<int>Q; Q.push(s); while(!Q.empty()) { int u = Q.front();Q.pop(); inq[u] = 0; for(int i=0;i<G[u].size();i++) { Edge& e = edges[G[u][i]]; if(e.cap > e.flow && d[e.to] > d[u] + e.cost) { d[e.to] = d[u] + e.cost; p[e.to] = G[u][i]; a[e.to] = min(a[u],e.cap-e.flow); if(!inq[e.to]) {Q.push(e.to);inq[e.to] = 1;} } } } if(d[t] == INF) return false; flow += a[t]; cost += (LL)d[t] * (LL)a[t]; for(int u=t;u!=s;u=edges[p[u]].from) { edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; } return true; } int MincostMaxflow(int s,int t,LL &cost) { int flow = 0;cost = 0; while(SPFA(s,t,flow,cost)); return flow; } int main() { while(scanf("%d%d",&n,&m)!=EOF) { init(); int u , v , w; for(int i=1;i<=m;i++) { scanf("%d%d%d",&u,&v,&w); AddEdge(u,v,1,w); AddEdge(v,u,1,w); } int s = 0 , t = n + 1; AddEdge(s,1,2,0); AddEdge(n,t,2,0); LL cost = 0; int ans = MincostMaxflow(s,t,cost); printf("%lld\n",cost); } return 0; }
POJ 2135 Farm Tour (dinic算法,网络流),布布扣,bubuko.com
POJ 2135 Farm Tour (dinic算法,网络流)
原文地址:http://blog.csdn.net/moguxiaozhe/article/details/38403703