标签:
1. ubifs号称性能比yaffs2 好,同时压缩可读写,文件系统image体较小同时可写,相当不错
2. ubifs制作
(1) mkfs.ubifs
mkfs.ubifs -r system -m 2048 -e 126976 -c 1057 -x zlib -o system.ubifs
-r说的目录
-m说的是nand flash的页大小,一般都是2048或者4096,当然也有些是512,硬件特性决定好了,或者说驱动规定好了,有些平台4096页当做2048用也是用的
-e说的是逻辑擦除块大小,大家知道nand flash页读页写块擦,一个设备多个块,一个块多个页,一般也都是一个块是64个页,这样算一下无论擦除块大小就是2048*64=131072,-e的算法是物理擦除块大小-2*页大小,这里就是131072-2*2048=126976
-c说的是最大逻辑块编号,这个很重要,不能大也不能小,太小也要大于image大小,太大mount有问题,计算起点是分区的物理块数量,比如128MiB的mtd分区,物理块数量是128MiB/2048/64 = 1024个,需要减去2个坏块保留块,减去1个wear-leveling块,还要减去1个eba的块,等等,比如最终的值是1022,注意,如果物理上这个分区有坏块的话,kernel会扫描到的,这时候,我们计算的这个值就要减去坏块数了,否则会有逻辑块大于物理块数的内核问题mount失败,确切知道坏块数是比较困难的,一般做法是做一个坏块容忍数,比如20个,这样我们再减去20个坏块,不要担心这个会浪费空间,ubinize的autoresize选项就是解决这个问题的。具体的这个值需要计算。!!!!
-o说的image名字
-x说的是压缩方法,默认是lzo,还支持zlib,zlib压缩率高些,但是lzo压缩解压速度快
(2) ubinize
ubinize -o system.ubi -m 2048 -p 131072 ubinize.cfg
-o说的是输出image
-m还是页大小
-p是物理擦除块大小
ubinize.cfg是volume配置文件,例子如下:
- [ubifs]
- mode=ubi
- image=system.ubifs #说的是mkfs.ubifs的结果
- vol_id=0
- vol_size=100MiB #说的是volume大小,用-e和-c的值做乘法计算,一般不用写,autoresize会自动根据mtd分区大小适应,默认值是image大小,写了这个作用是帮助检查image是否超过了分区限制,制作时候就提示,否则mount会出错。-c的值是经过计算的最大值了,不过autoresize参数会自适应大小,不会浪费空间的。
- vol_type=dynamic
- vol_alignment=1
- vol_name=system #说的是分区名字
- vol_flags=autoresize
(4) uboot支持
-0- 需要打开的配置 - 需要烧写mkfs.ubifs结果时候需要打开,ubinize处理过的不需要
CONFIG_CMD_UBI
CONFIG_CMD_UBIFS
CONFIG_LZO
CONFIG_RBTREE
CONFIG_ZLIB
CONFIG_GZIP
-1- ubifs烧写
mkfs.ubifs工具制作的结果,就是ubifs镜像,不包含volume信息,需要用
nand erase.part system
ubi part system - 激活分区
ubi create system - 创建分区
ubi write 84000000 system xxxxx - xxxxx表示镜像实际大小
-2- ubi volume bin烧写
mkfs.ubifs后,使用ubinize处理了ubifs的镜像后,镜像含有了volume信息,直接
nand write 84000000 system xxxxx - xxxxx表示镜像实际大小
(5) kernel支持
- Device Drivers --->
- Memory Technology Device(MTD) support --->
- UBI - Unsorted block images --->
- <*> Enable UBI - Unsorted block images
- File systems --->
- Miscellaneous filesystems --->
- <*> UBIFS file system support
- [*] Advanced compression options
- [*] LZO compression support
- [*] ZLIB compression support
(6) android支持
-1- andriod/system/core/rootdir/init.rc
mount yaffs2 mtd@userdata /data nosuid nodev
改为:
mount ubifs ubi@userdata /data nosuid nodev
-2- 增加对ubifs的mount支持
- andriod/system/core/init/builtins.c
- 在 } else if (!strncmp(source, "loop@", 5)) {
- 之前加上
- + }else if (!strncmp(source, "ubi@", 4)) {
- + n = ubi_attach_mtd(source + 4);
- + if (n < 0) {
- + return -1;
- + }
- + sprintf(tmp, "/dev/ubi%d_0", n);
- + if (wait)
- + wait_for_file(tmp, COMMAND_RETRY_TIMEOUT);
- + if (mount(tmp, target, system, flags, options) < 0) {
- + ubi_detach_dev(n);
- + return -1;
- + }
- + return 0;
- + }else if (!strncmp(source, "loop@", 5)) {
- 3. andriod/system/core/init/init.c
- 在static int property_triggers_enabled = 0;之后加上
- +static unsigned ubifs_enabled = 1;
- static int set_init_properties_action(int nargs, char **args)
- {
- property_set("ro.revision", tmp);
- + property_set("ro.ubifs",ubifs_enabled ? "1" : "0");
- return 0;
- }
- int main(int argc, char **argv)
- {
- action_for_each_trigger("post-fs", action_add_queue_tail);
- + action_for_each_trigger("ubi-fs", action_add_queue_tail);
- }
- 4. andriod/system/core/init/util.h
- void get_hardware_name(char *hardware, unsigned int *revision);
- +int ubi_attach_mtd(const char *name);
- +int ubi_detach_dev(int dev);
- 5. andriod/system/core/init/util.c
- #include <sys/un.h>
- +#include <sys/ioctl.h>
- #include "util.h"
- +#include "ubi-user.h"
- +#define UBI_CTRL_DEV "/dev/ubi_ctrl"
- +#define UBI_SYS_PATH "/sys/class/ubi"
- 在最后添加下面三个函数
- static int ubi_dev_read_int(int dev, const char *file, int def)
- {
- int fd, val = def;
- char path[128], buf[64];
- sprintf(path, UBI_SYS_PATH "/ubi%d/%s", dev, file);
- wait_for_file(path, 5);
- fd = open(path, O_RDONLY);
- if (fd == -1) {
- return val;
- }
- if (read(fd, buf, 64) > 0) {
- val = atoi(buf);
- }
- close(fd);
- return val;
- }
- int ubi_attach_mtd(const char *name)
- {
- int ret;
- int mtd_num, ubi_num;
- int ubi_ctrl, ubi_dev;
- int vols, avail_lebs, leb_size;
- char path[128];
- struct ubi_attach_req attach_req;
- struct ubi_mkvol_req mkvol_req;
- mtd_num = mtd_name_to_number(name);
- if (mtd_num == -1) {
- return -1;
- }
- ubi_ctrl = open(UBI_CTRL_DEV, O_RDONLY);
- if (ubi_ctrl == -1) {
- return -1;
- }
- memset(&attach_req, 0, sizeof(struct ubi_attach_req));
- attach_req.ubi_num = UBI_DEV_NUM_AUTO;
- attach_req.mtd_num = mtd_num;
- ret = ioctl(ubi_ctrl, UBI_IOCATT, &attach_req);
- if (ret == -1) {
- close(ubi_ctrl);
- return -1;
- }
- ubi_num = attach_req.ubi_num;
- vols = ubi_dev_read_int(ubi_num, "volumes_count", -1);
- if (vols == 0) {
- sprintf(path, "/dev/ubi%d", ubi_num);
- ubi_dev = open(path, O_RDONLY);
- if (ubi_dev == -1) {
- close(ubi_ctrl);
- return ubi_num;
- }
- avail_lebs = ubi_dev_read_int(ubi_num, "avail_eraseblocks", 0);
- leb_size = ubi_dev_read_int(ubi_num, "eraseblock_size", 0);
- memset(&mkvol_req, 0, sizeof(struct ubi_mkvol_req));
- mkvol_req.vol_id = UBI_VOL_NUM_AUTO;
- mkvol_req.alignment = 1;
- mkvol_req.bytes = (long long)avail_lebs * leb_size;
- mkvol_req.vol_type = UBI_DYNAMIC_VOLUME;
- ret = snprintf(mkvol_req.name, UBI_MAX_VOLUME_NAME + 1, "%s", name);
- mkvol_req.name_len = ret;
- ioctl(ubi_dev, UBI_IOCMKVOL, &mkvol_req);
- close(ubi_dev);
- }
- close(ubi_ctrl);
- return ubi_num;
- }
- int ubi_detach_dev(int dev)
- {
- int ret, ubi_ctrl;
- ubi_ctrl = open(UBI_CTRL_DEV, O_RDONLY);
- if (ubi_ctrl == -1) {
- return -1;
- }
- ret = ioctl(ubi_ctrl, UBI_IOCDET, &dev);
- close(ubi_ctrl);
- return ret;
- }
- 6.增加文件
- andriod/system/core/init/ubi-user.h
- /*
- * Copyright (c) International Business Machines Corp., 2006
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
- * the GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- *
- * Author: Artem Bityutskiy (Битюцкий Артём)
- */
- #ifndef __UBI_USER_H__
- #define __UBI_USER_H__
- /*
- * UBI device creation (the same as MTD device attachment)
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * MTD devices may be attached using %UBI_IOCATT ioctl command of the UBI
- * control device. The caller has to properly fill and pass
- * &struct ubi_attach_req object - UBI will attach the MTD device specified in
- * the request and return the newly created UBI device number as the ioctl
- * return value.
- *
- * UBI device deletion (the same as MTD device detachment)
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * An UBI device maybe deleted with %UBI_IOCDET ioctl command of the UBI
- * control device.
- *
- * UBI volume creation
- * ~~~~~~~~~~~~~~~~~~~
- *
- * UBI volumes are created via the %UBI_IOCMKVOL IOCTL command of UBI character
- * device. A &struct ubi_mkvol_req object has to be properly filled and a
- * pointer to it has to be passed to the IOCTL.
- *
- * UBI volume deletion
- * ~~~~~~~~~~~~~~~~~~~
- *
- * To delete a volume, the %UBI_IOCRMVOL IOCTL command of the UBI character
- * device should be used. A pointer to the 32-bit volume ID hast to be passed
- * to the IOCTL.
- *
- * UBI volume re-size
- * ~~~~~~~~~~~~~~~~~~
- *
- * To re-size a volume, the %UBI_IOCRSVOL IOCTL command of the UBI character
- * device should be used. A &struct ubi_rsvol_req object has to be properly
- * filled and a pointer to it has to be passed to the IOCTL.
- *
- * UBI volume update
- * ~~~~~~~~~~~~~~~~~
- *
- * Volume update should be done via the %UBI_IOCVOLUP IOCTL command of the
- * corresponding UBI volume character device. A pointer to a 64-bit update
- * size should be passed to the IOCTL. After this, UBI expects user to write
- * this number of bytes to the volume character device. The update is finished
- * when the claimed number of bytes is passed. So, the volume update sequence
- * is something like:
- *
- * fd = open("/dev/my_volume");
- * ioctl(fd, UBI_IOCVOLUP, &image_size);
- * write(fd, buf, image_size);
- * close(fd);
- *
- * Atomic eraseblock change
- * ~~~~~~~~~~~~~~~~~~~~~~~~
- *
- * Atomic eraseblock change operation is done via the %UBI_IOCEBCH IOCTL
- * command of the corresponding UBI volume character device. A pointer to
- * &struct ubi_leb_change_req has to be passed to the IOCTL. Then the user is
- * expected to write the requested amount of bytes. This is similar to the
- * "volume update" IOCTL.
- */
- /*
- * When a new UBI volume or UBI device is created, users may either specify the
- * volume/device number they want to create or to let UBI automatically assign
- * the number using these constants.
- */
- #define UBI_VOL_NUM_AUTO (-1)
- #define UBI_DEV_NUM_AUTO (-1)
- /* Maximum volume name length */
- #define UBI_MAX_VOLUME_NAME 127
- /* IOCTL commands of UBI character devices */
- #define UBI_IOC_MAGIC ‘o‘
- /* Create an UBI volume */
- #define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req)
- /* Remove an UBI volume */
- #define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, int32_t)
- /* Re-size an UBI volume */
- #define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req)
- /* IOCTL commands of the UBI control character device */
- #define UBI_CTRL_IOC_MAGIC ‘o‘
- /* Attach an MTD device */
- #define UBI_IOCATT _IOW(UBI_CTRL_IOC_MAGIC, 64, struct ubi_attach_req)
- /* Detach an MTD device */
- #define UBI_IOCDET _IOW(UBI_CTRL_IOC_MAGIC, 65, int32_t)
- /* IOCTL commands of UBI volume character devices */
- #define UBI_VOL_IOC_MAGIC ‘O‘
- /* Start UBI volume update */
- #define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, int64_t)
- /* An eraseblock erasure command, used for debugging, disabled by default */
- #define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, int32_t)
- /* An atomic eraseblock change command */
- #define UBI_IOCEBCH _IOW(UBI_VOL_IOC_MAGIC, 2, int32_t)
- /* Maximum MTD device name length supported by UBI */
- #define MAX_UBI_MTD_NAME_LEN 127
- /*
- * UBI data type hint constants.
- *
- * UBI_LONGTERM: long-term data
- * UBI_SHORTTERM: short-term data
- * UBI_UNKNOWN: data persistence is unknown
- *
- * These constants are used when data is written to UBI volumes in order to
- * help the UBI wear-leveling unit to find more appropriate physical
- * eraseblocks.
- */
- enum {
- UBI_LONGTERM = 1,
- UBI_SHORTTERM = 2,
- UBI_UNKNOWN = 3,
- };
- /*
- * UBI volume type constants.
- *
- * @UBI_DYNAMIC_VOLUME: dynamic volume
- * @UBI_STATIC_VOLUME: static volume
- */
- enum {
- UBI_DYNAMIC_VOLUME = 3,
- UBI_STATIC_VOLUME = 4,
- };
- /**
- * struct ubi_attach_req - attach MTD device request.
- * @ubi_num: UBI device number to create
- * @mtd_num: MTD device number to attach
- * @vid_hdr_offset: VID header offset (use defaults if %0)
- * @padding: reserved for future, not used, has to be zeroed
- *
- * This data structure is used to specify MTD device UBI has to attach and the
- * parameters it has to use. The number which should be assigned to the new UBI
- * device is passed in @ubi_num. UBI may automatically assign the number if
- * @UBI_DEV_NUM_AUTO is passed. In this case, the device number is returned in
- * @ubi_num.
- *
- * Most applications should pass %0 in @vid_hdr_offset to make UBI use default
- * offset of the VID header within physical eraseblocks. The default offset is
- * the next min. I/O unit after the EC header. For example, it will be offset
- * 512 in case of a 512 bytes page NAND flash with no sub-page support. Or
- * it will be 512 in case of a 2KiB page NAND flash with 4 512-byte sub-pages.
- *
- * But in rare cases, if this optimizes things, the VID header may be placed to
- * a different offset. For example, the boot-loader might do things faster if the
- * VID header sits at the end of the first 2KiB NAND page with 4 sub-pages. As
- * the boot-loader would not normally need to read EC headers (unless it needs
- * UBI in RW mode), it might be faster to calculate ECC. This is weird example,
- * but it real-life example. So, in this example, @vid_hdr_offer would be
- * 2KiB-64 bytes = 1984. Note, that this position is not even 512-bytes
- * aligned, which is OK, as UBI is clever enough to realize this is 4th sub-page
- * of the first page and add needed padding.
- */
- struct ubi_attach_req {
- int32_t ubi_num;
- int32_t mtd_num;
- int32_t vid_hdr_offset;
- uint8_t padding[12];
- };
- /**
- * struct ubi_mkvol_req - volume description data structure used in
- * volume creation requests.
- * @vol_id: volume number
- * @alignment: volume alignment
- * @bytes: volume size in bytes
- * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
- * @padding1: reserved for future, not used, has to be zeroed
- * @name_len: volume name length
- * @padding2: reserved for future, not used, has to be zeroed
- * @name: volume name
- *
- * This structure is used by user-space programs when creating new volumes. The
- * @used_bytes field is only necessary when creating static volumes.
- *
- * The @alignment field specifies the required alignment of the volume logical
- * eraseblock. This means, that the size of logical eraseblocks will be aligned
- * to this number, i.e.,
- * (UBI device logical eraseblock size) mod (@alignment) = 0.
- *
- * To put it differently, the logical eraseblock of this volume may be slightly
- * shortened in order to make it properly aligned. The alignment has to be
- * multiple of the flash minimal input/output unit, or %1 to utilize the entire
- * available space of logical eraseblocks.
- *
- * The @alignment field may be useful, for example, when one wants to maintain
- * a block device on top of an UBI volume. In this case, it is desirable to fit
- * an integer number of blocks in logical eraseblocks of this UBI volume. With
- * alignment it is possible to update this volume using plane UBI volume image
- * BLOBs, without caring about how to properly align them.
- */
- struct ubi_mkvol_req {
- int32_t vol_id;
- int32_t alignment;
- int64_t bytes;
- int8_t vol_type;
- int8_t padding1;
- int16_t name_len;
- int8_t padding2[4];
- char name[UBI_MAX_VOLUME_NAME + 1];
- } __attribute__ ((packed));
- /**
- * struct ubi_rsvol_req - a data structure used in volume re-size requests.
- * @vol_id: ID of the volume to re-size
- * @bytes: new size of the volume in bytes
- *
- * Re-sizing is possible for both dynamic and static volumes. But while dynamic
- * volumes may be re-sized arbitrarily, static volumes cannot be made to be
- * smaller then the number of bytes they bear. To arbitrarily shrink a static
- * volume, it must be wiped out first (by means of volume update operation with
- * zero number of bytes).
- */
- struct ubi_rsvol_req {
- int64_t bytes;
- int32_t vol_id;
- } __attribute__ ((packed));
- /**
- * struct ubi_leb_change_req - a data structure used in atomic logical
- * eraseblock change requests.
- * @lnum: logical eraseblock number to change
- * @bytes: how many bytes will be written to the logical eraseblock
- * @dtype: data type (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
- * @padding: reserved for future, not used, has to be zeroed
- */
- struct ubi_leb_change_req {
- int32_t lnum;
- int32_t bytes;
- uint8_t dtype;
- uint8_t padding[7];
- } __attribute__ ((packed));
- #endif /* __UBI_USER_H__ */
3. 常见问题
(1) ubifs_check_node: bad CRC: calculated 0xca82b3d7, read 0x9be0e26
ubifs_check_node: bad node at LEB 51:45312
注意这个crc错误,说的错误并不是LED 0的问题,也就是说第一个逻辑块没问题,CRC是正确的,这个问题的一个解决办法是要精确mkfs.ubifs时候的-c参数的值,不能太大了
(2)
[ 5.433349] UBIFS error (pid 71): ubifs_read_node: bad node type (150 but expected 1)
[ 5.434204] UBIFS error (pid 71): ubifs_read_node: bad node at LEB 524:4072, LEB mapping status 1
[ 5.435241] Not a node, first 24 bytes:
[ 5.435729] 00000000: 34 fb 21 ee 84 18 69 2d 60 b0 33 e6 74 f8 1c 15 da ca a1 c9 96 e3 ac 51 4.!...i-`.3.t..........Q
这个问题是,ubifs给nand驱动的buffer不一定是按照硬件对齐要求的,所以要驱动来判断,dma等地址需要页对齐等特性
(3) crc错误,但是LED 0:0
可能镜像没烧对,或者mtd-utils的版本和内核版本相差较远
(4) 可以擦掉一个分区,并不需要非要烧写image到那个分区,也可以直接mount的,这样可以做实验验证ubi的性能,前提是kernel配置好了,mount正确了
(5) 如果是跟文件系统或者要手动mount,以下步骤供参考:
uboot里, mtd命令后,看到需要用ubifs的mtd分区的编号,比如
device nand0 <rda_nand>, # parts = 10
#: name size offset mask_flags
0: bootloader 0x00200000 0x00000000 0
1: boot 0x00800000 0x00800000 0
2: system 0x08000000 0x02000000 0
system分区mtd编号是2,命令如下:
nand erase.part system
命令行参数增加
ubi.mtd=2,如果有多个,可以增加,如ubi.mtd=2,ubi.mtd=1,这样传递后,内核启动后会做attach的操作,类似android的init中的attach那样,attach之后,/dev/下就建立好设备了,进入系统后用:
内核控制台里,mount -t ubifs /dev/ubi0_0 /mnt 即可mount
转自:http://www.cnblogs.com/linucos/p/3279381.html
ubi使用(转)
标签:
原文地址:http://www.cnblogs.com/embedded-linux/p/5674218.html