说说:首先,最终蚂蚁的行走路线可以看成一直在沿着正方形的边沿走。而最大的正方形的边长是平方之后小于所给时间N的最大整数。这个最大的正方形的边长可以通过二分法获得。而且要注意的是根据边长的奇偶性,剩余路线的出发点可能在右下角,也可能在左上角。然后将剩余的要走的路再分成在到达顶点(即转折点)之前和之后,通过简单的数学计算最后就可以判断出蚂蚁最后的位置啦!
题目:
One day, an ant called Alice came to an M*M chessboard. She wanted to go around all the grids. So she began to walk along the chessboard according to this way: (you
一天,一只叫做Alice的蚂蚁来到了一个M*M大的棋盘。她想走遍每个网格。所以她开始按照这种方式在棋盘上走
can assume that her speed is one grid per second)
(你可以假设她的速度为一秒钟一格棋盘)
At the first second, Alice was standing at (1,1). Firstly she went up for a grid, then a grid to the right, a grid downward. After that, she went a grid to the right, then two grids
在第一秒的时候,Alice站在(1,1)。首先,她向上走一格,然后向右走一格,向下走一格。在这之后,她又向右走一格,然后向上走两格
upward, and then two grids to the left…in a word, the path was like a snake.
然后向左走两格...总之,她行走的路径看起来就像条蛇。
For example, her first 25 seconds went like this:
比如,她开始的25步就是这样走的:
( the numbers in the grids stands for the time when she went into the grids)
格子上的数字代表她走进格子的时间
25 |
24 |
23 |
22 |
21 |
10 |
11 |
12 |
13 |
20 |
9 |
8 |
7 |
14 |
19 |
2 |
3 |
6 |
15 |
18 |
1 |
4 |
5 |
16 |
17 |
5
4
3
2
1
1 2 3 4 5
At the 8th second , she was at (2,3), and at 20th second, she was at (5,4).
在第八秒的时候,她在(2,3),而在第20秒的时候,她在(5,4)
Your task is to decide where she was at a given time.
你的任务就是给出在给定时间她的位置
(you can assume that M is large enough)
你可以假设M足够大
Input file will contain several lines, and each line contains a number N(1<=N<=2*10^9), which stands for the time. The file will be ended with a line that contains a
输入包含好多行,每行有一个数字N(1<=N<=2*10^9)代表时间。整个输入在碰到N为0时结束
number 0.
For each input situation you should print a line with two numbers (x, y), the column and the row number, there must be only a space between them.
对于每个输入你必须输出两个数字(x,y),即列号和行号,并且他们之间只有一个空格
8
20
25
0
2 3
5 4
1 5
源代码:
#include <stdio.h> #include <math.h> int main(){ int left,right,mid; int N; //freopen("data.txt","r",stdin); while(scanf("%d",&N)&&N){ left=1; right=(int)sqrt(2000000000)+1; while(left<=right){//二分查找 mid=(left+right)/2; if(N==mid*mid) break; else if(N<mid*mid) right=mid-1; else left=mid+1; } if(N==mid*mid){ if(mid%2)//奇偶的情况略有不同 printf("%d %d\n",1,mid); else printf("%d %d\n",mid,1); continue; } if(N<mid*mid)//统一使mid的平方小于N mid--; if(mid%2){ if(N<mid*mid+mid+1)//未达转角 printf("%d %d\n",N-mid*mid,mid+1); else printf("%d %d\n",mid+1,(mid+1)*(mid+1)-N+1); } else{ if(N<mid*mid+mid+1) printf("%d %d\n",mid+1,N-mid*mid); else printf("%d %d\n",(mid+1)*(mid+1)-N+1,mid+1); } } return 0; }
Ant on a Chessboard UVA 10161,布布扣,bubuko.com
原文地址:http://blog.csdn.net/u011915301/article/details/38401253