标签:style http os io ar html amp htm
原式 ax + by = c => ax1 + by1 = gcd(a,b);
a,b,c为任意整数,d = gcd(a,b),则 ax1 + by1 = d 的一组解是(x1,y1),c是gcd(a,b)的倍数时,其中的一组解为(x1*c/d,y1*c/d);c不是gcd(a,b)的倍数时,无解
青蛙的约会,就是一道例题
按照题意很容易列举出等式:(x+ms) - (y+ns) = k*l; (k=1.....n) 变形到 扩展欧几里得公式 即可;
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
using namespace std;
#define MIN INT_MIN
#define MAX INT_MAX
#define N 204
#define LL long long
int gcd(int n,int m)
{
int r;
while(m!=0)
{
r = n%m;
n = m;
m = r;
}
return n;
}
void exgcd(LL a,LL b,LL &x1,LL &y1)
{
if(b==0)
{
x1=1;
y1=0;
return ;
}
exgcd(b,a%b,x1,y1);
LL t;
t=x1;
x1=y1;
y1=t-a/b*y1;
}
int main()
{
LL n,m,x,y,s,l,x1,y1;
scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l);
//推导过程如下
//(x+ms) - (y+ns) = k*l;(k=1.....n)
//x-y + ms - ns = k*l;
//(n-m)s + k*l = x-y;
// a*s + k*b = c; ->gcd(a,b);
// s为所求最短步数
LL st = gcd(n-m,l);
if((x-y)%st!=0) puts("Impossible");
else
{
LL a = n-m;
LL b = l;
LL c = x-y;
a /= st; b /= st; c /= st;
exgcd(a,b,x1,y1);
x1 = x1 * c;
// printf("%lld %lld\n",x1,y1);
//y1 = y1 * c;
//其中一组解(x1*c/st,y1*c/st)->前提c是gcd(a,b)的倍数
LL int tt = x1 % l;
//LL int tt = y1*c/st;
if(tt < 0)
{
tt += l;
}
printf("%d\n",tt);
}
return 0;
}
POJ 1061 青蛙的约会 (扩展欧几里得),布布扣,bubuko.com
标签:style http os io ar html amp htm
原文地址:http://blog.csdn.net/wjw0130/article/details/38401187