标签:
Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn‘t one, return 0 instead.
For example, given the array [2,3,1,2,4,3]
and s = 7
,
the subarray [4,3]
has the minimal length under the problem constraint.
求一个最短的数组,使其和大于等于给定的s.
暴力解法是枚举左端,右端,判断是否和大于s。求和可以先用prefix sum使每次求和运算复杂度降低为O(1)。所以总体的时间复杂度为O(n^2)。可以想想如何优化。考虑下二维for循环如何优化,如果i表示左端,j表示右端,则如果sum[i,j] >s,则对于这个i,j没有必要再增大。可以去处理下一个i。如果sum[i,j] < s, 则j减小和肯定小于s,没必要减小。
总结,sum[i,j] <s, j ++
sum[i,j] =s, i++。
所以i,j都朝着一个方向走属于前向形指针。
时间复杂度为O(n)。代码如下:
class Solution: # @param nums: a list of integers # @param s: an integer # @return: an integer representing the minimum size of subarray def minimumSize(self, nums, s): if not nums: return -1 pSum =[0] res = sys.maxint for i in xrange(len(nums)): pSum.append(pSum[-1] + nums[i]) i = 0 j = 1 while j < len(nums) + 1: if pSum[j] - pSum[i] >= s: res = min(res, j - i) i += 1 else: j += 1 return res if res != sys.maxint else -1
标签:
原文地址:http://www.cnblogs.com/sherylwang/p/5677375.html