标签:
广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量。广播变量可被用于有效地给每个节点一个大输入数据集的副本。Spark还尝试使用高效地广播算法来分发变量,进而减少通信的开销。
Spark的动作通过一系列的步骤执行,这些步骤由分布式的洗牌操作分开。Spark自动地广播每个步骤每个任务需要的通用数据。这些广播数据被序列化地缓存,在运行任务之前被反序列化出来。这意味着当我们需要在多个阶段的任务之间使用相同的数据,或者以反序列化形式缓存数据是十分重要的时候,显式地创建广播变量才有用。
累加器是仅仅被相关操作累加的变量,因此可以在并行中被有效地支持。它可以被用来实现计数器和总和。Spark原生地只支持数字类型的累加器,编程者可以添加新类型的支持。如果创建累加器时指定了名字,可以在Spark的UI界面看到。这有利于理解每个执行阶段的进程。(对于python还不支持)
累加器通过对一个初始化了的变量v调用SparkContext.accumulator(v)来创建。在集群上运行的任务可以通过add或者”+=”方法在累加器上进行累加操作。但是,它们不能读取它的值。只有驱动程序能够读取它的值,通过累加器的value方法。
package com.Streaming;
import org.apache.spark.Accumulator;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.broadcast.Broadcast;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.Time;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import scala.Tuple2;
import java.util.*;
/**
* 利用广播进行黑名单过滤!
*
* 无论是计数器还是广播!都不是想象的那么简单!
* 联合使用非常强大!!!绝对是高端应用!
*
* 如果 联合使用扩展的话,该怎么做!!!
*
* ?
*/
public class BroadcastAccumulator {
/**
* 肯定要创建一个广播List
*
* 在上下文中实例化!
*/
private static volatile Broadcast<List<String>> broadcastList = null;
/**
* 计数器!
* 在上下文中实例化!
*/
private static volatile Accumulator<Integer> accumulator = null;
public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local[2]").
setAppName("WordCountOnlieBroadcast");
JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(5));
/**
* 没有action的话,广播并不会发出去!
*
* 使用broadcast广播黑名单到每个Executor中!
*/
broadcastList = jsc.sc().broadcast(Arrays.asList("Hadoop","Mahout","Hive"));
/**
* 全局计数器!用于统计在线过滤了多少个黑名单!
*/
accumulator = jsc.sparkContext().accumulator(0,"OnlineBlackListCounter");
JavaReceiverInputDStream<String> lines = jsc.socketTextStream("Master", 9999);
/**
* 这里省去flatmap因为名单是一个个的!
*/
JavaPairDStream<String, Integer> pairs = lines.mapToPair(new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String word) {
return new Tuple2<String, Integer>(word, 1);
}
});
JavaPairDStream<String, Integer> wordsCount = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer v1, Integer v2) {
return v1 + v2;
}
});
/**
* Funtion里面 前几个参数是 入参。
* 后面的出参。
* 体现在call方法里面!
*
* 这里直接基于RDD进行操作了!
*/
wordsCount.foreach(new Function2<JavaPairRDD<String, Integer>, Time, Void>() {
@Override
public Void call(JavaPairRDD<String, Integer> rdd, Time time) throws Exception {
rdd.filter(new Function<Tuple2<String, Integer>, Boolean>() {
@Override
public Boolean call(Tuple2<String, Integer> wordPair) throws Exception {
if (broadcastList.value().contains(wordPair._1)) {
/**
* accumulator不应该仅仅用来计数。
* 可以同时写进数据库或者redis中!
*/
accumulator.add(wordPair._2);
return false;
}else {
return true;
}
};
/**
* 这里真的希望 广播和计数器执行的话。要进行一个action操作!
*/
}).collect();
System.out.println("广播器里面的值"+broadcastList.value());
System.out.println("计时器里面的值"+accumulator.value());
return null;
}
});
jsc.start();
jsc.awaitTermination();
jsc.close();
}
}
package com.Streaming
import java.util
import org.apache.spark.streaming.{Duration, StreamingContext}
import org.apache.spark.{Accumulable, Accumulator, SparkContext, SparkConf}
import org.apache.spark.broadcast.Broadcast
/**
* Created by lxh on 2016/6/30.
*/
object BroadcastAccumulatorStreaming {
/**
* 声明一个广播和累加器!
*/
private var broadcastList:Broadcast[List[String]] = _
private var accumulator:Accumulator[Int] = _
def main(args: Array[String]) {
val sparkConf = new SparkConf().setMaster("local[4]").setAppName("broadcasttest")
val sc = new SparkContext(sparkConf)
/**
* duration是ms
*/
val ssc = new StreamingContext(sc,Duration(2000))
// broadcastList = ssc.sparkContext.broadcast(util.Arrays.asList("Hadoop","Spark"))
broadcastList = ssc.sparkContext.broadcast(List("Hadoop","Spark"))
accumulator= ssc.sparkContext.accumulator(0,"broadcasttest")
/**
* 获取数据!
*/
val lines = ssc.socketTextStream("localhost",9999)
/**
* 拿到数据后 怎么处理!
*
* 1.flatmap把行分割成词。
* 2.map把词变成tuple(word,1)
* 3.reducebykey累加value
* (4.sortBykey排名)
* 4.进行过滤。 value是否在累加器中。
* 5.打印显示。
*/
val words = lines.flatMap(line => line.split(" "))
val wordpair = words.map(word => (word,1))
wordpair.filter(record => {broadcastList.value.contains(record._1)})
val pair = wordpair.reduceByKey(_+_)
/**
*这步为什么要先foreachRDD?
*
* 因为这个pair 是PairDStream<String, Integer>
*
* 进行foreachRDD是为了?
*
*/
/* pair.foreachRDD(rdd => {
rdd.filter(record => {
if (broadcastList.value.contains(record._1)) {
accumulator.add(1)
return true
} else {
return false
}
})
})*/
val filtedpair = pair.filter(record => {
if (broadcastList.value.contains(record._1)) {
accumulator.add(record._2)
true
} else {
false
}
}).print
println("累加器的值"+accumulator.value)
// pair.filter(record => {broadcastList.value.contains(record._1)})
/* val keypair = pair.map(pair => (pair._2,pair._1))*/
/**
* 如果DStream自己没有某个算子操作。就通过转化transform!
*/
/* keypair.transform(rdd => {
rdd.sortByKey(false)//TODO
})*/
pair.print()
ssc.start()
ssc.awaitTermination()
}
}
标签:
原文地址:http://blog.csdn.net/lxhandlbb/article/details/51931713