码迷,mamicode.com
首页 > 其他好文 > 详细

神奇的Noip模拟试题一试 2 排队

时间:2016-07-17 21:02:37      阅读:304      评论:0      收藏:0      [点我收藏+]

标签:

2 排队

(lineup.pas/.c/.cpp)

【问题描述】

      小sin所在的班有n名同学,正准备排成一列纵队,但他们不想按身高从矮到高排,那样太单调,太没个性。他们希望恰好有k对同学是高的在前,矮的在后,其余都是矮的在前,高的在后。如当n=5,k=3时,假设5人从矮到高分别标为1、2、3、4、5,则(1,5,2,3,4)、(2,3,1,5,4)、(3,1,4,2,5)都是可行的排法。小sin想知道总共有多少种可行排法。

【输入】

      输入文件名为lineup.in。

      一行两个整数n和k,意义见问题描述。

【输出】

      输出文件名为lineup.out。

      输出一个整数,表示可行排法数。由于结果可能很大,请输出排法数mod 1799999的值。

 

【输入输出样例】

lineup.in

lineup.out

5 3

15

 

【数据范围】

      对于20%的数据,有n≤10,k≤40;

      对于60%的数据,有n≤100,k≤500;

      对于100%的数据,有n≤100,k≤n*(n-1)/2。

 

解题报告

  像这样的题,也正如这套题一样的完全是思考的时间多。(哎,说得好像我做出来了一样,但其实我连样例都没有去想“天,15个,算了不想了。”所以啊,还是要有耐心,考场上一定要静下来,不要急躁,有同学用了两个小时找规律,最终不负有心人,全过了。)

  首先,我们需要找规律,而找规律不是随机就找到了,需要观察和对比两组甚至多组数据。于是,打开打表模式:

n\k  0   1   2   3   4   5   6   

1     1   0   0   0   0   0   0

2     1   1   0   0   0   0   0

3     1   2   2   1   0   0   0

4     1   3   5   6   5   3   1

5     1   4   9  15  20 22 20 .......

   每一个n都有一个k的数量的限制,即长度 l ,如果k>l 就为0 ,l =0,1,3,6,等等。l+=i-1;  每一次都是在上一次的基础上添一个比上一次最大值大1的数,如下:

上一次:1 2 3 4 5

这一次添一个6 有6 种添法:在5后,在4~5间,在3~4间,在2~3间,在1~2间,在1前;

分别有6种增加的可能性:    不影响,多一组,  多两组,   多三组,   多四组,    多五组

  因此可以列出方程:f[i][j]( i 个数,取 j 组)=f[i-1][j]+f[i-1][j-1]+...+f[i-1][j-i+1]

                  (转换):f[i][j-1]=f[i-1][j-1]+f[i-1][j-2]+...+f[i-1][j-i]

               (二式相减):f[i][j]=f[i][j-1]+f[i-1][j]-f[i-1][j-i]

  方程有了,代码就简单多了。

 1 #include<iostream>
 2 #include<cstdio>
 3 using namespace std;
 4 int n,k;
 5 int f[105][5005];
 6 const int inf=1799999;
 7 int main()
 8 {
 9     freopen("lineup.in","r",stdin);
10     freopen("lineup.out","w",stdout);
11     cin>>n>>k;
12     int l=0;
13     for (int i=1;i<=n;i++)
14     {
15         l+=i-1;
16         f[i][0]=1;
17         for (int j=1;j<=k;j++)
18         {
19             if (j>l) break;
20                 f[i][j]=(f[i-1][j]+f[i][j-1])%inf;
21             if (j-i>=0) f[i][j]=(f[i][j]-f[i-1][j-i]+inf)%inf;
22         }
23     }
24     cout<<f[n][k];
25     return 0;
26 }

 

神奇的Noip模拟试题一试 2 排队

标签:

原文地址:http://www.cnblogs.com/lx0319/p/5679293.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!