码迷,mamicode.com
首页 > 其他好文 > 详细

最大连续子序列和-动态规划

时间:2016-07-19 10:54:03      阅读:116      评论:0      收藏:0      [点我收藏+]

标签:

题目描述:

给定K个整数的序列{ N1, N2, …, NK },其任意连续子序列可表示为{ Ni, Ni+1, …, Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序中元素和最大的一个, 例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和为20。

注意:

最大连续子序列和如果为负,则返回0;而本题目中的最大连续子序列和并不返回0,如果是全为负数,则返回最大的负数即可。

思路分析:

-具有最优子结构,和重叠子问题, 动态规划的算法思路

  • 最大连续子序列和只可能是以位置0~n-1中某个位置结尾。当遍历到第i个元素时,判断在它前面的连续子序列和是否大于0,如果大于0,则以位置i结尾的最大连续子序列和为元素i和前门的连续子序列和相加;否则,则以位置i结尾的最大连续子序列和为元素i。
    -

状态转移方程: sum[i]=max(sum[i-1]+a[i],a[i])

代码:

int maxsequence3(int a[], int len)  
{  
    int maxsum, maxhere;  
    maxsum = maxhere = a[0];   //初始化最大和为a【0】  
    for (int i=1; i<len; i++) {  
        if (maxhere <= 0)  
            maxhere = a[i];  //如果前面位置最大连续子序列和小于等于0,则以当前位置i结尾的最大连续子序列和为a[i]  
        else  
            maxhere += a[i]; //如果前面位置最大连续子序列和大于0,则以当前位置i结尾的最大连续子序列和为它们两者之和  
        if (maxhere > maxsum) {  
            maxsum = maxhere;  //更新最大连续子序列和  
        }  
    }  
    return maxsum;  
}  

我的微信二维码如下,欢迎交流讨论

技术分享

欢迎关注《IT面试题汇总》微信订阅号。每天推送经典面试题和面试心得技巧,都是干货!

微信订阅号二维码如下:

技术分享

参考:
http://blog.csdn.net/sgbfblog/article/details/8032464
http://blog.csdn.net/zmazon/article/details/8247015

    -

最大连续子序列和-动态规划

标签:

原文地址:http://blog.csdn.net/lpjishu/article/details/51935625

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!