标签:
注:未完待续……持续更新中……
目录
一、Vmware网络模式介绍
参考:http://blog.csdn.net/collection4u/article/details/14127671
二、NAT模式配置
NAT是网络地址转换,是在宿主机和虚拟机之间增加一个地址转换服务,负责外部和虚拟机之间的通讯转接和IP转换。
我们部署Hadoop集群,这里选择NAT模式,各个虚拟机通过NAT使用宿主机的IP来访问外网。
我们的要求是集群中的各个虚拟机有固定的IP、可以访问外网,所以进行如下设置:
1、 Vmware安装后,默认的NAT设置如下:
2、 默认的设置是启动DHCP服务的,NAT会自动给虚拟机分配IP,但是我们需要将各个机器的IP固定下来,所以要取消这个默认设置。
3、 为机器设置一个子网网段,默认是192.168.136网段,我们这里设置为100网段,将来各个虚拟机Ip就为 192.168.100.*。
4、 点击NAT设置按钮,打开对话框,可以修改网关地址和DNS地址。这里我们为NAT指定DNS地址。
5、 网关地址为当前网段里的.2地址,好像是固定的,我们不做修改,先记住网关地址就好了,后面会用到。
第二步、安装Linux操作系统
三、Vmware上安装Linux系统
1、 文件菜单à新建虚拟机
2、 选择经典类型安装,下一步。
3、 选择稍后安装操作系统,下一步。
4、 选择Linux系统,版本选择CentOS 64位。
5、 命名虚拟机,给虚拟机起个名字,将来显示在Vmware左侧。并选择Linux系统保存在宿主机的哪个目录下,应该一个虚拟机保存在一个目录下,不能多个虚拟机使用一个目录。
6、 指定磁盘容量,是指定分给Linux虚拟机多大的硬盘,默认20G就可以,下一步。
7、 点击自定义硬件,可以查看、修改虚拟机的硬件配置,这里我们不做修改。
8、 点击完成后,就创建了一个虚拟机,但是此时的虚拟机还是一个空壳,没有操作系统,接下来安装操作系统。
9、 点击编辑虚拟机设置,找到DVD,指定操作系统ISO文件所在位置。
10、 点击开启此虚拟机,选择第一个回车开始安装操作系统。
11、 设置root密码
12、 选择Desktop,这样就会装一个Xwindow。
13、 先不添加普通用户,其他用默认的,就把Linux安装完毕了。
因为Vmware的NAT设置中关闭了DHCP自动分配IP功能,所以Linux还没有IP,需要我们设置网络各个参数。
1、 用root进入Xwindow,右击右上角的网络连接图标,选择修改连接。
2、 网络连接里列出了当前Linux里所有的网卡,这里只有一个网卡System eth0,点击编辑。
3、 配置IP、子网掩码、网关(和NAT设置的一样)、DNS等参数,因为NAT里设置网段为100.*,所以这台机器可以设置为192.168.100.10网关和NAT一致,为192.168.100.2
4、 用ping来检查是否可以连接外网,如下图,已经连接成功。
1、 临时修改hostname
[root@localhost Desktop]# hostname bigdata-senior01.chybinmy.com
这种修改方式,系统重启后就会失效。
2、 永久修改hostname
想永久修改,应该修改配置文件 /etc/sysconfig/network。
命令:[root@bigdata-senior01 ~] vim /etc/sysconfig/network
打开文件后,
NETWORKING=yes #使用网络
HOSTNAME=bigdata-senior01.chybinmy.com #设置主机名
命令:[root@bigdata-senior01 ~] vim /etc/hosts
添加hosts: 192.168.100.10 bigdata-senior01.chybinmy.com
学习环境可以直接把防火墙关闭掉。
(1) 用root用户登录后,执行查看防火墙状态。
[root@bigdata-senior01 hadoop]# service iptables status
(2) 用[root@bigdata-senior01 hadoop]# service iptables stop关闭防火墙,这个是临时关闭防火墙。
[root@bigdata-senior01 hadoop-2.5.0]# service iptables stop iptables: Setting chains to policy ACCEPT: filter [ OK ] iptables: Flushing firewall rules: [ OK ] iptables: Unloading modules: [ OK ] |
(3) 如果要永久关闭防火墙用
[root@bigdata-senior01 hadoop]# chkconfig iptables off关闭,这种需要重启才能生效。
selinux是Linux一个子安全机制,学习环境可以将它禁用
[hadoop@bigdata-senior01 hadoop-2.5.0]$ vim /etc/sysconfig/selinux
# This file controls the state of SELinux on the system. # SELINUX= can take one of these three values: # enforcing - SELinux security policy is enforced. # permissive - SELinux prints warnings instead of enforcing. # disabled - No SELinux policy is loaded. SELINUX=disabled # SELINUXTYPE= can take one of these two values: # targeted - Targeted processes are protected, # mls - Multi Level Security protection. SELINUXTYPE=targeted |
1、 查看是否已经安装了java JDK。
[root@bigdata-senior01 Desktop]# java –version
注意:Hadoop机器上的JDK,最好是Oracle的Java JDK,不然会有一些问题,比如可能没有JPS命令。
如果安装了其他版本的JDK,卸载掉。
2、 安装java JDK
(1) 去下载Oracle版本Java JDK:jdk-7u67-linux-x64.tar.gz
(2) 将jdk-7u67-linux-x64.tar.gz解压到/opt/modules目录下
[root@bigdata-senior01 /]# tar -zxvf jdk-7u67-linux-x64.tar.gz -C /opt/modules
(3) 添加环境变量
设置JDK的环境变量 JAVA_HOME。需要修改配置文件/etc/profile,追加
export JAVA_HOME="/opt/modules/jdk1.7.0_67"
export PATH=$JAVA_HOME/bin:$PATH
修改完毕后,执行 source /etc/profile
(4)安装后再次执行 java –version,可以看见已经安装完成。
[root@bigdata-senior01 /]# java -version
java version "1.7.0_67"
Java(TM) SE Runtime Environment (build 1.7.0_67-b01)
Java HotSpot(TM) 64-Bit Server VM (build 24.65-b04, mixed mode)
第四步、Hadoop部署模式
Hadoop部署模式有:本地模式、伪分布模式、完全分布式模式、HA完全分布式模式。
区分的依据是NameNode、DataNode、ResourceManager、NodeManager等模块运行在几个JVM进程、几个机器。
模式名称 |
各个模块占用的JVM进程数 |
各个模块运行在几个机器数上 |
本地模式 |
1个 |
1个 |
伪分布式模式 |
N个 |
1个 |
完全分布式模式 |
N个 |
N个 |
HA完全分布式 |
N个 |
N个 |
本地模式是最简单的模式,所有模块都运行与一个JVM进程中,使用的本地文件系统,而不是HDFS,本地模式主要是用于本地开发过程中的运行调试用。下载hadoop安装包后不用任何设置,默认的就是本地模式。
十一、解压hadoop后就是直接可以使用
1、 创建一个存放本地模式hadoop的目录
[hadoop@bigdata-senior01 modules]$ mkdir /opt/modules/hadoopstandalone
2、 解压hadoop文件
[hadoop@bigdata-senior01 modules]$ tar -zxf /opt/sofeware/hadoop-2.5.0.tar.gz -C /opt/modules/hadoopstandalone/
3、 确保JAVA_HOME环境变量已经配置好
[hadoop@bigdata-senior01 modules]$ echo ${JAVA_HOME}
/opt/modules/jdk1.7.0_67
十二、运行MapReduce程序,验证
我们这里用hadoop自带的wordcount例子来在本地模式下测试跑mapreduce。
1、 准备mapreduce输入文件wc.input
[hadoop@bigdata-senior01 modules]$ cat /opt/data/wc.input hadoop mapreduce hive hbase spark storm sqoop hadoop hive spark hadoop |
2、 运行hadoop自带的mapreduce Demo
[hadoop@bigdata-senior01 hadoopstandalone]$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /opt/data/wc.input output2
这里可以看到job ID中有local字样,说明是运行在本地模式下的。
3、 查看输出文件
本地模式下,mapreduce的输出是输出到本地。
[hadoop@bigdata-senior01 hadoopstandalone]$ ll output2 total 4 -rw-r--r-- 1 hadoop hadoop 60 Jul 7 12:50 part-r-00000 -rw-r--r-- 1 hadoop hadoop 0 Jul 7 12:50 _SUCCESS |
输出目录中有_SUCCESS文件说明JOB运行成功,part-r-00000是输出结果文件。
第六步、伪分布式Hadoop部署过程
十三、Hadoop所用的用户设置
1、 创建一个名字为hadoop的普通用户
[root@bigdata-senior01 ~]# useradd hadoop
[root@bigdata-senior01 ~]# passwd hadoop
2、 给hadoop用户sudo权限
[root@bigdata-senior01 ~]# vim /etc/sudoers
设置权限,学习环境可以将hadoop用户的权限设置的大一些,但是生产环境一定要注意普通用户的权限限制。
root ALL=(ALL) ALL
hadoop ALL=(root) NOPASSWD:ALL
注意:如果root用户无权修改sudoers文件,先手动为root用户添加写权限
[root@bigdata-senior01 ~]# chmod u+w /etc/sudoers
3、 切换到hadoop用户
[root@bigdata-senior01 ~]# su - hadoop
[hadoop@bigdata-senior01 ~]$
4、 创建存放hadoop文件的目录
[hadoop@bigdata-senior01 ~]$ sudo mkdir /opt/modules
5、 将hadoop文件夹的所有者指定为hadoop用户
如果存放hadoop的目录的所有者不是hadoop,之后hadoop运行中可能会有权限问题,那么就讲所有者改为hadoop。
[hadoop@bigdata-senior01 ~]# sudo chown -R hadoop:hadoop /opt/modules
十四、解压Hadoop目录文件
1、 复制hadoop-2.5.0.tar.gz到/opt/modules目录下。
2、 解压hadoop-2.5.0.tar.gz
[hadoop@bigdata-senior01 ~]# cd /opt/modules
[hadoop@bigdata-senior01 hadoop]# tar -zxvf hadoop-2.5.0.tar.gz
1、 配置Hadoop环境变量
[hadoop@bigdata-senior01 hadoop]# vim /etc/profile
追加配置:
export HADOOP_HOME="/opt/modules/hadoop-2.5.0"
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
执行:source /etc/profile 使得配置生效
验证HADOOP_HOME参数:
[hadoop@bigdata-senior01 /]$ echo $HADOOP_HOME
/opt/modules/hadoop-2.5.0
2、 配置 hadoop-env.sh、mapred-env.sh、yarn-env.sh文件的JAVA_HOME参数
[hadoop@bigdata-senior01 ~]$ sudo vim ${HADOOP_HOME}/etc/hadoop/hadoop-env.sh
修改JAVA_HOME参数为:
export JAVA_HOME="/opt/modules/jdk1.7.0_67"
3、 配置core-site.xml
[hadoop@bigdata-senior01 ~]$ sudo vim ${HADOOP_HOME}/etc/hadoop/core-site.xml
(1) fs.defaultFS参数配置的是HDFS的地址。
<property> <name>fs.defaultFS</name> <value>hdfs://bigdata-senior01.chybinmy.com:8020</value> </property> |
(2) hadoop.tmp.dir配置的是Hadoop临时目录,比如HDFS的NameNode数据默认都存放这个目录下,查看*-default.xml等默认配置文件,就可以看到很多依赖${hadoop.tmp.dir}的配置。
默认的hadoop.tmp.dir是/tmp/hadoop-${user.name},此时有个问题就是NameNode会将HDFS的元数据存储在这个/tmp目录下,如果操作系统重启了,系统会清空/tmp目录下的东西,导致NameNode元数据丢失,是个非常严重的问题,所有我们应该修改这个路径。
l 创建临时目录:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sudo mkdir -p /opt/data/tmp
l 将临时目录的所有者修改为hadoop
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sudo chown –R hadoop:hadoop /opt/data/tmp
l 修改hadoop.tmp.dir
<property> <name>hadoop.tmp.dir</name> <value>/opt/data/tmp</value> </property> |
1、 配置hdfs-site.xml
[hadoop@bigdata-senior01 hadoop-2.5.0]$ vim ${HADOOP_HOME}/etc/hadoop/hdfs-site.xml
<property> <name>dfs.replication</name> <value>1</value> </property> |
dfs.replication配置的是HDFS存储时的备份数量,因为这里是伪分布式环境只有一个节点,所以这里设置为1。
2、 格式化HDFS
[hadoop@bigdata-senior01 ~]$ hdfs namenode –format
格式化是对HDFS这个分布式文件系统中的DataNode进行分块,统计所有分块后的初始元数据的存储在NameNode中。
格式化后,查看core-site.xml里hadoop.tmp.dir(本例是/opt/data目录)指定的目录下是否有了dfs目录,如果有,说明格式化成功。
注意:
(1) 格式化时,这里注意hadoop.tmp.dir目录的权限问题,应该hadoop普通用户有读写权限才行,可以将/opt/data的所有者改为hadoop。
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sudo chown -R hadoop:hadoop /opt/data
(2) 查看NameNode格式化后的目录
[hadoop@bigdata-senior01 ~]$ ll /opt/data/tmp/dfs/name/current
fsimage是NameNode元数据在内存满了后,持久化保存到的文件。
fsimage*.md5 是校验文件,用于校验fsimage的完整性。
seen_txid 是hadoop的版本
vession文件里保存:
l namespaceID:NameNode的唯一ID。
l clusterID:集群ID,NameNode和DataNode的集群ID应该一致,表明是一个集群。
#Mon Jul 04 17:25:50 CST 2016 namespaceID=2101579007 clusterID=CID-205277e6-493b-4601-8e33-c09d1d23ece4 cTime=0 storageType=NAME_NODE blockpoolID=BP-1641019026-127.0.0.1-1467624350057 layoutVersion=-57 |
3、 启动NameNode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/hadoop-daemon.sh start namenode
starting namenode, logging to /opt/modules/hadoop-2.5.0/logs/hadoop-hadoop-namenode-bigdata-senior01.chybinmy.com.out
4、 启动DataNode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/hadoop-daemon.sh start datanode
starting datanode, logging to /opt/modules/hadoop-2.5.0/logs/hadoop-hadoop-datanode-bigdata-senior01.chybinmy.com.out
5、 启动SecondaryNameNode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/hadoop-daemon.sh start secondarynamenode
starting secondarynamenode, logging to /opt/modules/hadoop-2.5.0/logs/hadoop-hadoop-secondarynamenode-bigdata-senior01.chybinmy.com.out
6、 JPS命令查看是否已经启动成功,有结果就是启动成功了。
[hadoop@bigdata-senior01 hadoop-2.5.0]$ jps
3034 NameNode
3233 Jps
3193 SecondaryNameNode
3110 DataNode
7、 HDFS上测试创建目录、上传、下载文件
(1) HDFS上创建目录
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/bin/hdfs dfs -mkdir /demo1
(2) 上传本地文件到HDFS上
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/bin/hdfs dfs -put ${HADOOP_HOME}/etc/hadoop/core-site.xml /demo1
(3) 读取HDFS上的文件内容
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/bin/hdfs dfs -cat /demo1/core-site.xml
(4) 从HDFS上下载文件到本地
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -get /demo1/core-site.xml .
8、 Web页面查看HDFS
HDFS的Web页面端口号为50070,通过http://192.168.100.10:50070可以查看。
如果不能访问,看服务器的防火墙是否打开着,学习环境,可以直接把防火墙关闭。
1、 配置mapred-site.xml
默认没有mapred-site.xml文件,但是有个mapred-site.xml.template配置模板文件。复制模板生成mapred-site.xml。
[hadoop@bigdata-senior01 hadoop-2.5.0]# cp etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml
添加配置如下:
<property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> |
指定mapreduce运行在yarn框架上。
2、 配置yarn-site.xml
添加配置如下:
<property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.resourcemanager.hostname</name> <value>bigdata-senior01.chybinmy.com</value> </property> |
(1) yarn.nodemanager.aux-services配置了yarn的默认混洗方式,选择为mapreduce的默认混洗算法。
(2) yarn.resourcemanager.hostname指定了Resourcemanager运行在哪个节点上。
3、 启动Resourcemanager
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/yarn-daemon.sh start resourcemanager
4、 启动nodemanager
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ${HADOOP_HOME}/sbin/yarn-daemon.sh start nodemanager
5、 查看是否启动成功
[hadoop@bigdata-senior01 hadoop-2.5.0]$ jps 3034 NameNode 4439 NodeManager 4197 ResourceManager 4543 Jps 3193 SecondaryNameNode 3110 DataNode |
可以看到ResourceManager、NodeManager已经启动成功了。
6、 YARN的Web页面
YARN的Web客户端端口号是8088,通过http://192.168.100.10:8088/可以查看。
在Hadoop的share目录里,自带了一些jar包,里面带有一些mapreduce实例小例子,位置在share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar,可以运行这些例子体验刚搭建好的Hadoop平台,我们这里来运行最经典的WordCount实例。
1、 创建测试用的Input文件
(1) 创建输入目录
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -mkdir -p /wordcountdemo/input
(2) 创建原始文件
在本地/opt/data目录创建一个文件wc.input,内容如下:
(3) 将wc.input文件上传到HDFS的/wordcountdemo/input目录中
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -put /opt/data/wc.input /wordcountdemo/input
2、 运行WordCount MapReduce Job
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /wordcountdemo/input /wordcountdemo/output
3、 查看输出结果目录
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -ls /wordcountdemo/output -rw-r--r-- 1 hadoop supergroup 0 2016-07-05 05:12 /wordcountdemo/output/_SUCCESS -rw-r--r-- 1 hadoop supergroup 60 2016-07-05 05:12 /wordcountdemo/output/part-r-00000 |
(1) output目录中有两个文件,_SUCCESS文件是空文件,有这个文件说明Job执行成功。
(2) part-r-00000文件是结果文件,其中-r-说明这个文件是Reduce阶段产生的结果,mapreduce程序执行时,可以没有reduce阶段,但是肯定会有map阶段,如果没有reduce阶段这个地方有是-m-。
(3) 一个reduce会产生一个part-r-开头的文件。
4、 查看输出文件内容
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -cat /wordcountdemo/output/part-r-00000 hadoop 3 hbase 1 hive 2 mapreduce 1 spark 2 sqoop 1 storm 1 |
结果是按照键值排好序的。
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/hadoop-daemon.sh stop namenode
stopping namenode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/hadoop-daemon.sh stop datanode
stopping datanode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/yarn-daemon.sh stop resourcemanager
stopping resourcemanager
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/yarn-daemon.sh stop nodemanager
stopping nodemanager
二十、 Hadoop各个功能模块的理解
1、 HDFS模块
HDFS负责大数据的存储,通过将大文件分块后进行分布式存储方式,突破了服务器硬盘大小的限制,解决了单台机器无法存储大文件的问题,HDFS是个相对独立的模块,可以为YARN提供服务,也可以为HBase等其他模块提供服务。
2、 YARN模块
YARN是一个通用的资源协同和任务调度框架,是为了解决Hadoop1.x中MapReduce里NameNode负载太大和其他问题而创建的一个框架。
YARN是个通用框架,不止可以运行MapReduce,还可以运行Spark、Storm等其他计算框架。
3、 MapReduce模块
MapReduce是一个计算框架,它给出了一种数据处理的方式,即通过Map阶段、Reduce阶段来分布式地流式处理数据。它只适用于大数据的离线处理,对实时性要求很高的应用不适用。
开启历史服务可以在web页面上查看Yarn上执行job情况的详细信息。
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/mr-jobhistory-daemon.sh start historyserver
二十三、Web查看job执行历史
1、 运行一个mapreduce任务
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /wordcountdemo/input /wordcountdemo/output1
2、 job执行中
3、 查看job历史
历史服务器的Web端口默认是19888,可以查看
4、 日志聚集介绍
5、 开启日志聚集
6、 查看日志聚集
1、 克隆虚拟机
(1) Vmware左侧选中要克隆的机器,这里对原有的BigData01机器进行克隆,虚拟机菜单中,选中管理菜单下的克隆命令。
(2) 选择“创建完整克隆”,虚拟机名称为BigData02,选择虚拟机文件保存路径,进行克隆。
(3) 再次克隆一个名为BigData03的虚拟机。
2、 配置网络
(1) 修改网卡名称
在BigData02和BigData03机器上编辑网卡信息。
执行sudo vim /etc/udev/rules.d/70-persistent-net.rules命令。
因为是从BigData01机器克隆来的,所以会保留BigData01的网卡eth0,并且再添加一个网卡eth1。并且eth0的Mac地址和BigData01的地址是一样的,Mac地址不允许相同,所以要删除eth0,只保留eth1网卡,并且要将eth1改名为eth0。
将修改后的eth0的mac地址复制下来,修改network-scripts文件中的HWADDR属性。
sudo vim /etc/sysconfig/network-scripts/ifcfg-eth0
(2) 修改网络参数
BigData02机器IP改为192.168.100.12
BigData03机器IP改为192.168.100.13
3、 配置Hostname
BigData02配置hostname为 bigdata-senior02.chybinmy.com
BigData03配置hostname为 bigdata-senior03.chybinmy.com
4、 配置hosts
BigData01、BigData02、BigData03三台机器hosts都配置为
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sudo vim /etc/hosts
192.168.100.10 bigdata-senior01.chybinmy.com 192.168.100.12 bigdata-senior02.chybinmy.com 192.168.100.13 bigdata-senior03.chybinmy.com |
5、 配置Windows上的SSH客户端
在本地Windows中的SSH客户端上添加对BigData02、BigData03机器的SSH链接。
bigdata-senior01.chybinmy.com |
bigdata-senior01.chybinmy.com |
bigdata-senior01.chybinmy.com |
NameNode |
ResourceManage |
|
DataNode |
DataNode |
DataNode |
NodeManager |
NodeManager |
NodeManager |
HistoryServer |
|
SecondaryNameNode |
为了和之前BigData01机器上安装伪分布式Hadoop区分开来,我们将BigData01上的Hadoop服务都停止掉,然后在一个新的目录/opt/modules/app下安装另外一个Hadoop。
我们采用先在第一台机器上解压、配置Hadoop,然后再分发到其他两台机器上的方式来安装集群。
6、 解压Hadoop目录
[hadoop@bigdata-senior01 modules]$ tar -zxf /opt/sofeware/hadoop-2.5.0.tar.gz -C /opt/modules/app/
7、 配置Hadoop JDK路径
修改hadoop-env.sh、mapred-env.sh、yarn-env.sh文件中的JDK路径
export JAVA_HOME="/opt/modules/jdk1.7.0_67"
8、 配置core-site.xml
[hadoop@bigdata-senior01 hadoop-2.5.0]$ vim etc/hadoop/core-site.xml
<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://bigdata-senior01.chybinmy.com:8020</value> </property> <property> <name>hadoop.tmp.dir</name> <value>/opt/modules/app/hadoop-2.5.0/data/tmp</value> </property> </configuration> |
fs.defaultFS为NameNode的地址
hadoop.tmp.dir为hadoop临时目录的地址,默认情况下,NameNode和DataNode的数据文件都会存在这个目录下的对应子目录下。应该保证此目录是存在的,如果不存在,先创建。
9、 配置hdfs-site.xml
[hadoop@bigdata-senior01 hadoop-2.5.0]$ vim etc/hadoop/hdfs-site.xml
<configuration> <property> <name>dfs.namenode.secondary.http-address</name> <value>bigdata-senior03.chybinmy.com:50090</value> </property> </configuration> |
dfs.namenode.secondary.http-address是指定secondaryNameNode的http访问地址和端口号,因为在规划中,我们将BigData03规划为SecondaryNameNode服务器,所以这里设置为:bigdata-senior03.chybinmy.com:50090
10、 配置slaves
[hadoop@bigdata-senior01 hadoop-2.5.0]$ vim etc/hadoop/slaves
bigdata-senior01.chybinmy.com bigdata-senior02.chybinmy.com bigdata-senior03.chybinmy.com |
slaves文件是指定HDFS上有哪些DataNode节点。
11、 配置yarn-site.xml
[hadoop@bigdata-senior01 hadoop-2.5.0]$ vim etc/hadoop/yarn-site.xml
<property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.resourcemanager.hostname</name> <value>bigdata-senior02.chybinmy.com</value> </property> <property> <name>yarn.log-aggregation-enable</name> <value>true</value> </property> <property> <name>yarn.log-aggregation.retain-seconds</name> <value>106800</value> </property> |
根据规划yarn.resourcemanager.hostname这个指定resourcemanager服务器指向bigdata-senior02.chybinmy.com
yarn.log-aggregation-enable是配置是否启用日志聚集功能。
yarn.log-aggregation.retain-seconds是配置聚集的日志在HDFS上最多保存多长时间。
12、 配置mapred-site.xml
从mapred-site.xml.template复制一个mapred-site.xml文件
[hadoop@bigdata-senior01 hadoop-2.5.0]$ cp etc/hadoop/mapred-site.xml.template etc/hadoop/mapred-site.xml
<configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapreduce.jobhistory.address</name> <value>bigdata-senior01.chybinmy.com:10020</value> </property> <property> <name>mapreduce.jobhistory.webapp.address</name> <value>bigdata-senior01.chybinmy.com:19888</value> </property> </configuration> |
mapreduce.framework.name设置mapreduce任务运行在yarn上。
mapreduce.jobhistory.address是设置mapreduce的历史服务器安装在BigData01机器上。
mapreduce.jobhistory.webapp.address是设置历史服务器的web页面地址和端口号。
二十八、设置SSH无密码登录
Hadoop集群中的各个机器间会相互地通过SSH访问,每次访问都输入密码是不现实的,所以要配置各个机器间的SSH是无密码登录的。
1、 在BigData01上生成公钥
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ssh-keygen -t rsa
一路回车,都设置为默认值,然后再当前用户的Home目录下的.ssh目录中会生成公钥文件(id_rsa.pub)和私钥文件(id_rsa)。
2、 分发公钥
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ssh-copy-id bigdata-senior01.chybinmy.com
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ssh-copy-id bigdata-senior02.chybinmy.com
[hadoop@bigdata-senior01 hadoop-2.5.0]$ ssh-copy-id bigdata-senior03.chybinmy.com
3、 设置BigData02、BigData03到其他机器的无密钥登录
同样的在BigData02、BigData03上生成公钥和私钥后,将公钥分发到三台机器上。
1、 首先在其他两台机器上创建存放Hadoop的目录
[hadoop@bigdata-senior02 ~]$ mkdir /opt/modules/app
[hadoop@bigdata-senior03 ~]$ mkdir /opt/modules/app
2、 通过Scp分发
Hadoop根目录下的share/doc目录是存放的hadoop的文档,文件相当大,建议在分发之前将这个目录删除掉,可以节省硬盘空间并能提高分发的速度。
doc目录大小有1.6G。 [hadoop@bigdata-senior01 hadoop-2.5.0]$ du -sh /opt/modules/app/hadoop-2.5.0/share/doc 1.6G /opt/modules/app/hadoop-2.5.0/share/doc |
[hadoop@bigdata-senior01 hadoop-2.5.0]$ scp -r /opt/modules/app/hadoop-2.5.0/ bigdata-senior02.chybinmy.com:/opt/modules/app
[hadoop@bigdata-senior01 hadoop-2.5.0]$ scp -r /opt/modules/app/hadoop-2.5.0/ bigdata-senior03.chybinmy.com:/opt/modules/app
在NameNode机器上执行格式化:
[hadoop@bigdata-senior01 hadoop-2.5.0]$ /opt/modules/app/hadoop-2.5.0/bin/hdfs namenode -format
1、 启动HDFS
[hadoop@bigdata-senior01 hadoop-2.5.0]$ /opt/modules/app/hadoop-2.5.0/sbin/start-dfs.sh
2、 启动YARN
[hadoop@bigdata-senior01 hadoop-2.5.0]$ /opt/modules/app/hadoop-2.5.0/sbin/start-yarn.sh
在BigData02上启动ResourceManager:
[hadoop@bigdata-senior02 hadoop-2.5.0]$ sbin/yarn-daemon.sh start resourcemanager
3、 启动日志服务器
因为我们规划的是在BigData03服务器上运行MapReduce日志服务,所以要在BigData03上启动。
[hadoop@bigdata-senior03 ~]$ /opt/modules/app/hadoop-2.5.0/sbin/mr-jobhistory-daemon.sh start historyserver starting historyserver, logging to /opt/modules/app/hadoop-2.5.0/logs/mapred-hadoop-historyserver-bigda ta-senior03.chybinmy.com.out [hadoop@bigdata-senior03 ~]$ jps 3570 Jps 3537 JobHistoryServer 3310 SecondaryNameNode 3213 DataNode 3392 NodeManager |
4、 查看HDFS Web页面
http://bigdata-senior01.chybinmy.com:50070/
5、 查看YARN Web 页面
http://bigdata-senior02.chybinmy.com:8088/cluster
我们这里用hadoop自带的wordcount例子来在本地模式下测试跑mapreduce。
1、 准备mapreduce输入文件wc.input
[hadoop@bigdata-senior01 modules]$ cat /opt/data/wc.input hadoop mapreduce hive hbase spark storm sqoop hadoop hive spark hadoop |
2、 在HDFS创建输入目录input
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -mkdir /input
3、 将wc.input上传到HDFS
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -put /opt/data/wc.input /input/wc.input
4、 运行hadoop自带的mapreduce Demo
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /input/wc.input /output
5、 查看输出文件
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -ls /output Found 2 items -rw-r--r-- 3 hadoop supergroup 0 2016-07-14 16:36 /output/_SUCCESS -rw-r--r-- 3 hadoop supergroup 60 2016-07-14 16:36 /output/part-r-00000 |
第十步、Zookeeper分布式机器部署
zookeeper是分布式管理协作框架,Hadoop的高可用部署依赖于zookeeper。
zookeeper服务器必须是奇数台,因为zookeeper有选举制度,角色有:领导者、跟随者、观察者,选举的目的是保证集群中数据的一致性。
zookeeper集群中对各个机器的时间有较高要求,必须保证各个机器的时间是同步的,所以要配置时间服务器。
我们这里在BigData01、BigData02、BigData03三台机器上安装zookeeper集群。
1、 解压安装包
在BigData01上安装解压zookeeper安装包。
[hadoop@bigdata-senior01 hadoop-2.5.0]$ tar -zxf /opt/sofeware/zookeeper-3.4.8.tar.gz -C /opt/modules/
2、 修改配置
(1) 拷贝conf下的zoo_sample.cfg副本,改名为zoo.cfg。zoo.cfg是zookeeper的配置文件。
[hadoop@bigdata-senior01 zookeeper-3.4.8]$ cp conf/zoo_sample.cfg conf/zoo.cfg
(2) dataDir属性设置zookeeper的数据文件存放的目录
dataDir=/opt/modules/zookeeper-3.4.8/data/zData
(3) 指定zookeeper集群中各个机器的信息
server.1=bigdata-senior01.chybinmy.com:2888:3888 server.2=bigdata-senior02.chybinmy.com:2888:3888 server.3=bigdata-senior03.chybinmy.com:2888:3888 |
server后面的数字范围是1到255,所以一个zookeeper集群最多可以有255个机器。
3、 创建myid文件
在dataDir所指定的目录下创一个名为myid的文件,文件内容为server点后面的数字。
4、 分发到其他机器
[hadoop@bigdata-senior01 zookeeper-3.4.8]$ scp -r /opt/modules/zookeeper-3.4.8 bigdata-senior02.chybinmy.com:/opt/modules
[hadoop@bigdata-senior01 zookeeper-3.4.8]$ scp -r /opt/modules/zookeeper-3.4.8 bigdata-senior03.chybinmy.com:/opt/modules
5、 修改其他机器上的myid文件
[hadoop@bigdata-senior02 zookeeper-3.4.8]$ echo 2 > /opt/modules/zookeeper-3.4.8/data/zData/myid [hadoop@bigdata-senior02 zookeeper-3.4.8]$ cat /opt/modules/zookeeper-3.4.8/data/zData/myid 2 |
[hadoop@bigdata-senior03 ~]$ echo 3 > /opt/modules/zookeeper-3.4.8/data/zData/myid [hadoop@bigdata-senior03 ~]$ cat /opt/modules/zookeeper-3.4.8/data/zData/myid 3 |
6、 启动zookeeper
需要在各个机器上分别启动zookeeper。
[hadoop@bigdata-senior01 zookeeper-3.4.8]$ bin/zkServer.sh start
[hadoop@bigdata-senior02 zookeeper-3.4.8]$ bin/zkServer.sh start
[hadoop@bigdata-senior03 zookeeper-3.4.8]$ bin/zkServer.sh start
(1) 进入zookeeper Shell
在zookeeper根目录下执行 bin/zkCli.sh进入zk shell模式。
zookeeper很像一个小型的文件系统,/是根目录,下面的所有节点都叫zNode。
(2) 进入zk shell 后输入任意字符,可以列出所有的zookeeper命令
(3) 查询zNode上的数据:get /zookeeper
(4) 创建一个zNode : create /znode1 "demodata "
(5) 列出所有子zNode:ls /
(6) 删除znode : rmr /znode1
(7) 退出shell模式:quit
单NameNode的缺陷存在单点故障的问题,如果NameNode不可用,则会导致整个HDFS文件系统不可用。所以需要设计高可用的HDFS(Hadoop HA)来解决NameNode单点故障的问题。解决的方法是在HDFS集群中设置多个NameNode节点。但是一旦引入多个NameNode,就有一些问题需要解决。
1、 HDFS HA需要保证的四个问题:
(1) 保证NameNode内存中元数据数据一致,并保证编辑日志文件的安全性。
(2) 多个NameNode如何协作
(3) 客户端如何能正确地访问到可用的那个NameNode。
(4) 怎么保证任意时刻只能有一个NameNode处于对外服务状态。
2、 解决方法
(1) 对于保证NameNode元数据的一致性和编辑日志的安全性,采用Zookeeper来存储编辑日志文件。
(2) 对于NameNode如果协作
(3) 客户端通过连接一个Zookeeper的代理来确定当时哪个NameNode处于服务状态。
3、 HDFS HA 架构
三十七、HDFS HA架构图
1、 服务器角色规划
2、 创建HDFS HA 版本Hadoop程序目录
在bigdata01、bigdata02、bigdata03三台机器上分别创建目录/opt/modules/hadoopha/用来存放Hadoop HA环境。
[hadoop@bigdata-senior01 modules]$ mkdir /opt/modules/hadoopha
3、 新解压Hadoop 2.5.0
[hadoop@bigdata-senior01 ~]$ tar -zxf /opt/sofeware/hadoop-2.5.0.tar.gz -C /opt/modules/hadoopha/
4、 配置Hadoop JDK路径
修改hadoop-env.sh、mapred-env.sh、yarn-env.sh文件中的JDK路径
export JAVA_HOME="/opt/modules/jdk1.7.0_67"
5、 配置hdfs-site.xml
<configuration> <property> <!-- 为namenode集群定义一个services name --> <name>dfs.nameservices</name> <value>ns1</value> </property> <property> <!-- nameservice 包含哪些namenode,为各个namenode起名 --> <name>dfs.ha.namenodes.ns1</name> <value>nn1,nn2</value> </property> <property> <!-- 名为nn1的namenode 的rpc地址和端口号,rpc用来和datanode通讯 --> <name>dfs.namenode.rpc-address.ns1.nn1</name> <value>bigdata-senior01.chybinmy.com:8020</value> </property> <property> <!-- 名为nn2的namenode 的rpc地址和端口号,rpc用来和datanode通讯 --> <name>dfs.namenode.rpc-address.ns1.nn2</name> <value>bigdata-senior02.chybinmy.com:8020</value> </property> <property> <!--名为nn1的namenode 的http地址和端口号,web客户端 --> <name>dfs.namenode.http-address.ns1.nn1</name> <value>bigdata-senior01.chybinmy.com:50070</value> </property> <property> <!--名为nn2的namenode 的http地址和端口号,web客户端 --> <name>dfs.namenode.http-address.ns1.nn2</name> <value>bigdata-senior02.chybinmy.com:50070</value> </property> <property> <!-- namenode间用于共享编辑日志的journal节点列表 --> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://bigdata-senior01.chybinmy.com:8485;bigdata-senior02.chybinmy.com:8485;bigdata-senior03.chybinmy.com:8485/ns1</value> </property> <property> <!-- journalnode 上用于存放edits日志的目录 --> <name>dfs.journalnode.edits.dir</name> <value>/opt/modules/hadoopha/hadoop-2.5.0/tmp/data/dfs/jn</value> </property> <property> <!-- 客户端连接可用状态的NameNode所用的代理类 --> <name>dfs.client.failover.proxy.provider.ns1</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> <property> <!-- --> <name>dfs.ha.fencing.methods</name> <value>sshfence</value> </property> <property> <!-- --> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/home/hadoop/.ssh/id_rsa</value> </property> </configuration> |
6、 配置core-site.xml
<configuration> <property> <!-- hdfs 地址,ha中是连接到nameservice --> <name>fs.defaultFS</name> <value>hdfs://ns1</value> </property> <property> <!-- --> <name>hadoop.tmp.dir</name> <value>/opt/modules/hadoopha/hadoop-2.5.0/data/tmp</value> </property> </configuration> |
hadoop.tmp.dir设置hadoop临时目录地址,默认时,NameNode和DataNode的数据存在这个路径下。
7、 配置slaves文件
bigdata-senior01.chybinmy.com bigdata-senior02.chybinmy.com bigdata-senior03.chybinmy.com |
8、 分发到其他节点
分发之前先将share/doc目录删除,这个目录中是帮助文件,并且很大,可以删除。
[hadoop@bigdata-senior01 hadoop-2.5.0]$ scp -r /opt/modules/hadoopha bigdata-senior02.chybinmy.com:/opt/modules
[hadoop@bigdata-senior01 hadoop-2.5.0]$ scp -r /opt/modules/hadoopha bigdata-senior03.chybinmy.com:/opt/modules
9、 启动HDFS HA集群
(1) 三台机器分别启动Journalnode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/hadoop-daemon.sh start journalnode
[hadoop@bigdata-senior02 hadoop-2.5.0]$ sbin/hadoop-daemon.sh start journalnode
[hadoop@bigdata-senior03 hadoop-2.5.0]$ sbin/hadoop-daemon.sh start journalnode
(2) jps命令查看是否启动
10、 启动Zookeeper
在三台节点上启动Zookeeper:
[hadoop@bigdata-senior01 zookeeper-3.4.8]$ bin/zkServer.sh start
[hadoop@bigdata-senior02 zookeeper-3.4.8]$ bin/zkServer.sh start
[hadoop@bigdata-senior03 zookeeper-3.4.8]$ bin/zkServer.sh start
11、 格式化NameNode
(1) 在第一台上进行NameNode格式化
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs namenode -format
(2) 在第二台NameNode上
[hadoop@bigdata-senior02 hadoop-2.5.0]$ bin/hdfs namenode -bootstrapStandby^
12、 启动NameNode
(1) 在第一台、第二台上启动NameNode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/hadoop-daemon.sh start namenode
[hadoop@bigdata-senior02 hadoop-2.5.0]$ sbin/hadoop-daemon.sh start namenode
(2) 查看HDFS Web页面,此时两个NameNode都是standby状态。
(3) 切换第一台为active状态
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs haadmin -transitionToActive nn1
此时从web 页面就看到第一台已经是active状态了。
13、 配置故障自动转移
利用zookeeper集群实现故障自动转移,在配置故障自动转移之前,要先关闭集群,不能在HDFS运行期间进行配置。
(1) 关闭NameNode、DataNode、JournalNode、zookeeper
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/hadoop-daemon.sh stop namenode [hadoop@bigdata-senior01 hadoop-2.5.0]$
sbin/hadoop-daemon.sh stop datanode [hadoop@bigdata-senior01 hadoop-2.5.0]$ cd ../../zookeeper-3.4.8/ [hadoop@bigdata-senior01 zookeeper-3.4.8]$ bin/zkServer.sh stop |
[hadoop@bigdata-senior02 hadoop-2.5.0]$ sbin/hadoop-daemon.sh stop namenode [hadoop@bigdata-senior02 hadoop-2.5.0]$
sbin/hadoop-daemon.sh stop datanode [hadoop@bigdata- senior02 hadoop-2.5.0]$ cd ../../zookeeper-3.4.8/ [hadoop@bigdata- senior02 zookeeper-3.4.8]$ bin/zkServer.sh stop |
[hadoop@bigdata- senior03 hadoop-2.5.0]$
sbin/hadoop-daemon.sh stop datanode [hadoop@bigdata- senior03 hadoop-2.5.0]$ cd ../../zookeeper-3.4.8/ [hadoop@bigdata- senior03 zookeeper-3.4.8]$ bin/zkServer.sh stop |
(2) 修改hdfs-site.xml
<property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property> |
(3) 修改core-site.xml
<property> <name>ha.zookeeper.quorum</name> <value>bigdata-senior01.chybinmy.com:2181,bigdata-senior02.chybinmy.com:2181,bigdata-senior03.chybinmy.com:2181</value> </property> |
(4) 将hdfs-site.xml和core-site.xml分发到其他机器
[hadoop@bigdata-senior01 hadoop-2.5.0]$ scp /opt/modules/hadoopha/hadoop-2.5.0/etc/hadoop/hdfs-site.xml bigdata-senior02.chybinmy.com:/opt/modules/hadoopha/hadoop-2.5.0/etc/hadoop/ [hadoop@bigdata-senior01 hadoop-2.5.0]$ scp /opt/modules/hadoopha/hadoop-2.5.0/etc/hadoop/hdfs-site.xml bigdata-senior03.chybinmy.com:/opt/modules/hadoopha/hadoop-2.5.0/etc/hadoop/ |
[hadoop@bigdata-senior01 hadoop-2.5.0]$ scp /opt/modules/hadoopha/hadoop-2.5.0/etc/hadoop/core-site.xml bigdata-senior02.chybinmy.com:/opt/modules/hadoopha/hadoop-2.5.0/etc/hadoop/ [hadoop@bigdata-senior01 hadoop-2.5.0]$ scp /opt/modules/hadoopha/hadoop-2.5.0/etc/hadoop/core-site.xml bigdata-senior03.chybinmy.com:/opt/modules/hadoopha/hadoop-2.5.0/etc/hadoop/ |
(5) 启动zookeeper
三台机器启动zookeeper
[hadoop@bigdata-senior01 hadoop-2.5.0]$ /opt/modules/zookeeper-3.4.8/bin/zkServer.sh start
(6) 创建一个zNode
[hadoop@bigdata-senior01 hadoop-2.5.0]$ cd /opt/modules/hadoopha/hadoop-2.5.0/ [hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs zkfc -formatZK |
在Zookeeper上创建一个存储namenode相关的节点。
14、 启动HDFS、JournalNode、zkfc
(1) 启动NameNode、DataNode、JournalNode、zkfc
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/start-dfs.sh
zkfc只针对NameNode监听。
1、 测试故障自动转移和数据是否共享
(1) 在nn1上上传文件
目前bigdata-senior01节点上的NameNode是Active状态的。
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/hdfs dfs -put /opt/data/wc.input /
(2) 将nn1上的NodeNode进程杀掉
[hadoop@bigdata-senior01 hadoop-2.5.0]$ kill -9 3364
nn1上的namenode已经无法访问了。
(3) 查看nn2是否是Active状态
(4) 在nn2上查看是否看见文件
经以上验证,已经实现了nn1和nn2之间的文件同步和故障自动转移。
Hadoop2.4版本之前,ResourceManager也存在单点故障的问题,也需要实现HA来保证ResourceManger的高可也用性。
ResouceManager从记录着当前集群的资源分配情况和JOB的运行状态,YRAN HA 利用Zookeeper来存储这些信息来达到高可用。另外利用Zookeeper来实现ResourceManager自动故障转移。
四十一、YARN HA 架构图
1、 服务器角色规划
2、 修改配置文件yarn-site.xml
<configuration> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> <property> <name>yarn.log-aggregation-enable</name> <value>true</value> </property> <property> <name>yarn.log-aggregation.retain-seconds</name> <value>106800</value> </property>
<property> <!-- 启用resourcemanager的ha功能 --> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <property> <!-- 为resourcemanage ha 集群起个id --> <name>yarn.resourcemanager.cluster-id</name> <value>yarn-cluster</value> </property> <property> <!-- 指定resourcemanger ha 有哪些节点名 --> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm12,rm13</value> </property> <property> <!-- 指定第一个节点的所在机器 --> <name>yarn.resourcemanager.hostname.rm12</name> <value>bigdata-senior02.chybinmy.com</value> </property> <property> <!-- 指定第二个节点所在机器 --> <name>yarn.resourcemanager.hostname.rm13</name> <value>bigdata-senior03.chybinmy.com</value> </property> <property> <!-- 指定resourcemanger ha 所用的zookeeper 节点 --> <name>yarn.resourcemanager.zk-address</name> <value>bigdata-senior01.chybinmy.com:2181,bigdata-senior02.chybinmy.com:2181,bigdata-senior03.chybinmy.com:2181</value> </property> <property> <!-- --> <name>yarn.resourcemanager.recovery.enabled</name> <value>true</value> </property> <property> <!-- --> <name>yarn.resourcemanager.store.class</name> <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value> </property> </configuration> |
3、 分发到其他机器
[hadoop@bigdata-senior01 hadoop-2.5.0]$ scp /opt/modules/hadoopha/hadoop-2.5.0/etc/hadoop/yarn-site.xml bigdata-senior02.chybinmy.com:/opt/modules/hadoopha/hadoop-2.5.0/etc/hadoop/ [hadoop@bigdata-senior01 hadoop-2.5.0]$ scp /opt/modules/hadoopha/hadoop-2.5.0/etc/hadoop/yarn-site.xml bigdata-senior03.chybinmy.com:/opt/modules/hadoopha/hadoop-2.5.0/etc/hadoop/ |
4、 启动
(1) 在bigdata-senior01上启动yarn
[hadoop@bigdata-senior01 hadoop-2.5.0]$ sbin/start-yarn.sh
(2) 在bigdata-senior02、bigdata-senior03上启动resourcemanager
[hadoop@bigdata-senior02 hadoop-2.5.0]$ sbin/yarn-daemon.sh start resourcemanager [hadoop@bigdata-senior03 hadoop-2.5.0]$ sbin/yarn-daemon.sh start resourcemanager |
(3) 启动后各个节点的进程
Web客户端访问bigdata02机器上的resourcemanager正常,它是active状态的。
http://bigdata-senior02.chybinmy.com:8088/cluster
访问另外一个resourcemanager,因为他是standby,会自动跳转到active的resourcemanager。
http://bigdata-senior03.chybinmy.com:8088/cluster
5、 运行一个mapreduce job
[hadoop@bigdata-senior01 hadoop-2.5.0]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /wc.input /input
6、 在job运行过程中,将Active状态的resourcemanager进程杀掉
[hadoop@bigdata-senior02 hadoop-2.5.0]$ kill -9 4475
7、 观察另外一个resourcemanager是否可以自动接替
bigdata02的resourcemanage Web客户端已经不能访问,bigdata03的resourcemanage已经自动变为active状态。
8、 观察job是否可以顺利完成
而mapreduce job 也能顺利完成,没有因为resourcemanager的意外故障而影响运行。
经过以上测试,已经验证YARN HA 已经搭建成功。
参考:http://nickzp.blog.51cto.com/12728/1123735
标签:
原文地址:http://www.cnblogs.com/chybin/p/5685681.html