标签:平衡
一.AVL树的性质
左子树和右子树的高度之差的绝对值不超过1;
树中的每个左子树和右子树都是AVL树。
二.代码实现
#include<iostream>
using namespace std;
template<class K,class V>
struct AVLTreeNode
{
AVLTreeNode<K, V>* _left;
AVLTreeNode<K, V>* _right;
AVLTreeNode<K, V>* _parent;
K _key;
V _value;
int _bf;//平衡因子
AVLTreeNode(const K& key,const V& value)
: _left(NULL)
, _right(NULL)
, _parent(NULL)
, _key(key)
, _value(value)
, _bf(0)
{}
};
template<class K,class V>
class AVLTree
{
typedef AVLTreeNode<K, V> Node;
public:
AVLTree()
:_root(NULL)
{}
~AVLTree()
{}
bool Insert(const K& key, const V& value)
{
Node* cur = _root;
Node* parent = NULL;
//找节点的位置
if (_root == NULL)
{
_root = new Node(key, value);
return true;
}
while (cur)
{
if (key > cur->_key)
{
parent = cur;
cur = cur->_right;
}
else if (key < cur->_key)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//找到了,插入
cur = new Node(key, value);
if (key > parent->_key)
{
parent->_right = cur;
cur->_parent = parent;
}
else if (key < parent->_key)
{
parent->_left = cur;
cur->_parent = parent;
}
//调整平衡因子
while (parent)
{
//插入在左子数,parent的平衡因子-1
if (cur == parent->_left)
{
parent->_bf -= 1;
}
//插入在左子数,parent的平衡因子 + 1
else
{
parent->_bf += 1;
}
//如果插入节点的父节点平衡因子为0,停止更新平衡因子
if (parent->_bf == 0)
{
break;
}
//如果插入节点的父节点平衡因子为+1、-1,向上更新
else if (parent->_bf == 1 || parent->_bf == -1)
{
cur = parent;
parent = parent->_parent;
}
//如果插入节点的父节点平衡因子为+2、-2,旋转
else
{
//根据旋转因子判断旋转类型
if (parent->_bf == 2)
{
//左单旋
if (cur->_bf == 1)
{
RotateL(parent);
}
//右左旋 -1
else
{
RotateRL(parent);
}
}
//-2
else
{
//右单旋
if (cur->_bf == -1)
{
RotateR(parent);
}
//左右旋
else
{
RotateLR(parent);
}
}
break;
}
}
return true;
}
//parent一定不为空
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
//保存parent->_parent
Node* ppNode = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
//判断ppNode,确定subR->_parent是谁
if (ppNode == NULL)
{
_root = subR;
subR->_parent = NULL;
}
else
{
subR->_parent = ppNode;
if (ppNode->_left==parent)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
}
subR->_bf = parent->_bf = 0;
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
{
subLR->_parent = parent;
}
Node* ppNode = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (ppNode == NULL)
{
_root = subL;
subL->_parent = NULL;
}
else
{
subL->_parent = ppNode;
if (ppNode->_left == parent)
{
ppNode->_left = subL;
}
else
{
ppNode->_right = subL;
}
}
subL->_bf = parent->_bf = 0;
}
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
//处理平衡因子,可以结合图,如下图1、2
if (bf == 1)
{
parent->_bf = -1;
subR->_bf = 0;
}
else if (bf == -1)
{
parent->_bf = 0;
subR->_bf = 1;
}
else//0
{
parent->_bf = subR->_bf = 0;
}
subRL->_bf = 0;
}
void RotateLR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(parent->_left);
RotateR(parent);
//插在subLR的右边
if (bf == 1)
{
parent->_bf = 0;
subL->_bf = -1;
}
//插在subLR的左边
else if (bf == -1)
{
parent->_bf = 1;
subL->_bf = 0;
}
//没插
else
{
parent->_bf = subL->_bf = 0;
}
//旋转后subLR为这棵树的根,无论哪种情况,平衡因子为0
subLR->_bf = 0;
}
bool IsBlance()
{
return _IsBlance(_root);
}
int Height(Node* root)
{
if (root == NULL)
{
return 0;
}
int left = Height(root->_left);
int right = Height(root->_right);
return left > right ? left +1: right+1;//加根节点
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
protected:
Node* _root;
bool _IsBlance(Node* root)
{
if (root == NULL)
return true;
int left = Height(root->_left);
int right = Height(root->_right);
//平衡因子异常
if ((right - left) != root->_bf && (abs((right - left) >= 2)))//当前树满足,还需递归求子树是否满足
{
cout << "平衡因子异常" << root->_key << endl;
return false;
}
return (_IsBlance(root->_left)) && (_IsBlance(root->_right)); //递归求子树是否满足
}
void _InOrder(Node*& root)
{
if (root == NULL)
return;
_InOrder(root->_left);
cout << root->_key << " ";
_InOrder(root->_right);
}
};
void Test1()
{
int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
AVLTree<int, int> avl;
for (int i = 0; i < sizeof(a) / sizeof(a[0]); i++)
{
avl.Insert(a[i], i);
}
avl.InOrder();
cout << "Is Blance?" << avl.IsBlance() << endl;
}
void Test2()
{
int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
AVLTree<int, int> avl;
for (int i = 0; i < sizeof(a) / sizeof(a[0]); i++)
{
avl.Insert(a[i], i);
}
avl.InOrder();
cout << "Is Blance?" << avl.IsBlance() << endl;
}
int main()
{
Test2();
system("pause");
return 0;
}三.补充(图)
本文出自 “sunshine225” 博客,请务必保留此出处http://10707460.blog.51cto.com/10697460/1827973
标签:平衡
原文地址:http://10707460.blog.51cto.com/10697460/1827973