标签:style os io for ar html line amp
题意:
for(i=A ; i!=B ;i +=C)循环语句,问在k位操作系统中循环结束次数。
若在有则输出循环次数。
否则输出死循环。
存在这样的情况;i= 65533 ;i<=2;i+= 4;时i = 2;
由模线性方程->扩展欧几里得
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <queue> using namespace std; #define MIN INT_MIN #define MAX INT_MAX #define N 204 #define LL __int64 LL int gcd(LL n,LL m) { LL r; while(m!=0) { r = n%m; n = m; m = r; } return n; } void exgcd(LL a,LL b,LL &x1,LL &y1) { if(b==0) { x1=1; y1=0; return ; } exgcd(b,a%b,x1,y1);//辗转相除 LL t=x1; x1=y1; y1=t-a/b*y1; //设n%b = a;-> a = n - n/b; return ; } int main() { LL a,b,c,k; while(~scanf("%I64d %I64d %I64d %I64d",&a,&b,&c,&k)) { // int sum = 0; if(a==0&&b==0&&c==0&&k==0) break; /* for(int i = 1;i<=7;i+=2) { sum++; cout<<i<<' '<<endl; }*/ //推导过程 //不考虑取余,次数 = (b-a)/c+1 //假设次数x = ((b-a + 1<<k)%(1<<k))/c //变形为:cx = (b-a + 1<<k)%(1<<k) //根据小白书,模线性方程 cx = (b-a)%(1<<k) //故:(cx - (b-a))一定是(1<<k)的倍数,设倍数是y //变形为扩展欧几里得公式: cx - (1<<k)y = (b-a) //故:有解的充要条件是 (b-a)% gcd(c,1<<k)==0 LL A,C,x1,y1; LL B = (LL)1<<k; A = c; C = b - a; LL st = gcd(A,B); //cout<<st<<endl; if(C%st!=0) puts("FOREVER"); else { exgcd(A,B,x1,y1); x1 = x1 * (C/st)%B; x1=(x1%(B/st)+B/st)%(B/st); // LL tt = (x1 + (C/st))%(C/st); cout<<x1<<endl; } } return 0; }
POJ 2115 (模线性方程 -> 扩展欧几里得),布布扣,bubuko.com
标签:style os io for ar html line amp
原文地址:http://blog.csdn.net/wjw0130/article/details/38406999