码迷,mamicode.com
首页 > 其他好文 > 详细

LSTM学习和总结1

时间:2016-07-20 19:16:27      阅读:245      评论:0      收藏:0      [点我收藏+]

标签:

长短期记忆网络LSTM(Long Short Term Memory)本身不是一个完整的模型,主要是对RNN隐含层的改进。因此,RNN网络即使用LSTM单元的RNN网络。LSTM非常适合用于处理与时间序列高度相关的问题,例如机器翻译、对话生成、编码解码、图文转换等。

说明:word2vec(CBOW,Skip-gram),GRU,word embedding(词向量),MDP(Markov Decision Process),Deep Reinforcement Learning,DQN等。

 

参考文献:

[1] LSTM实现详解:http://www.csdn.net/article/2015-09-14/2825693

[2] char-rnn:https://github.com/karpathy/char-rnn

[3] 深入浅出LSTM神经网络:http://www.csdn.net/article/2015-06-05/2824880

[4] Learning to read with recurrent neural networks:http://blog.terminal.com/recurrent-neural-networks-deep-net-optimization-lstm/

[5] 理解LSTM网络:http://www.jianshu.com/p/9dc9f41f0b29/

[6] 深度学习BP算法的推导(附加RNN,LSTM的推导说明):http://blog.csdn.net/zhuanshenweiliu/article/details/42267993

[7] LSTM Networks for Sentiment Analysis:http://deeplearning.net/tutorial/lstm.html

[8] 如何评价最近比较火的LSTM?:http://www.zhihu.com/question/27017697

[9] Long Short-Term Memory:Tutorial on LSTM Recurrent Networks:http://people.idsia.ch/~juergen/lstm/

[10] caffe-lstm:https://github.com/junhyukoh/caffe-lstm

[11] LSTM简介以及数学推导:http://blog.csdn.net/a635661820/article/details/45390671

[12] LSTM与情感分析:http://www.weixingon.com/s/lstm+%E6%83%85%E6%84%9F%E5%88%86%E6%9E%90

[13] 有哪些LSTM(Long Short Term Memory)和RNN(Recurrent)网络的教程?:http://www.zhihu.com/question/29411132?utm_source=top.caibaojian.com/47897

[14] 深度学习资料大全:http://www.cnblogs.com/charlotte77/p/5485438.html

[15] 近期风靡互联网的Deep Dream人工智能图像识别软件:http://www.ltaaa.com/bbs/thread-364424-1-1.html

[16] 深度学习:推动NLP领域发展的新引擎:http://www.iteye.com/news/31261

[17] 盘点8个最具启发意义的深度学习应用:http://synchuman.baijia.baidu.com/article/542746

[18] DQN从入门到放弃(DQN与增强学习):https://zhuanlan.zhihu.com/p/21262246

[19] 深度增强学习DRL专栏:http://blog.csdn.net/column/details/deeprl.html

LSTM学习和总结1

标签:

原文地址:http://www.cnblogs.com/shengshengwang/p/5689152.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!