一.概念
红黑树是一棵二叉搜索树,它在每个节点上增加了一个存储位来表示节点的颜色,可以是Red或Black。通过对任何一条从根到叶子简单路径上的颜色来约束,红黑树保证最长路径不超过最短路径的两倍,因而近似于平衡。
2.性质:
每个节点,不是红色就是黑色的
根节点是黑色的
如果一个节点是红色的,则它的两个子节点是黑色的(没有连续的红节点)
对每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。(每条路径的黑色节点的数量相等)
二.代码实现
#include<iostream>
using namespace std;
enum COL
{
RED,
BLACK
};
template<class K, class V>
struct RBTreeNode
{
K _key;
V _value;
COL _col;
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
RBTreeNode(const K& key,const V& value)
: _key(key)
, _value(value)
, _col(RED)
, _left(NULL)
, _right(NULL)
, _parent(NULL)
{}
};
template<class K,class V>
class RBTree
{
typedef RBTreeNode<K, V> Node;
public:
RBTree()
:_root(NULL)
{}
~RBTree()
{}
bool Insert(const K& key, const V& value)
{
//寻找插入节点的位置
if (_root == NULL)
{
_root = new Node(key, value);
_root->_col = BLACK;
return true;
}
Node* cur = _root;
Node* parent = NULL;
while (cur)
{
if (key > cur->_key)
{
parent = cur;
cur = cur->_right;
}
else if (key < cur->_key)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
//插入
cur = new Node(key, value);
if (key > parent->_key)
{
parent->_right = cur;
cur->_parent = parent;
}
else
{
parent->_left = cur;
cur->_parent = parent;
}
//判断是否符合红黑树
//判断规则3(不能有连续的两个红节点)
while (cur != _root&&parent->_col==RED)//cur!=_root保证了parent不为空
{
Node* Grandparent = parent->_parent;
//找叔叔节点
if (Grandparent->_left == parent)
{
Node* uncle = Grandparent->_right;
//第一种情况:叔叔节点存在且为红
if (uncle&&uncle->_col == RED)
{
//将parent和uncle变黑,grandparent变红,再把cur赋值给grandparent,向上调整
parent->_col = uncle->_col = BLACK;
Grandparent->_col = RED;
cur = Grandparent;
parent = cur->_parent;
}
//第二种情况:叔叔节点不存在或为黑(此时grandparent、parent、cur构成了单旋的条件)
else
{
//第三种情况:此时grandparent、parent、cur构成了双旋的条件
if (parent->_right == cur)
{
//对parent做左单旋,转换为第二种情况
RotateL(parent);
//注意:旋转后指针位置需交换
swap(parent, cur);
}
RotateR(Grandparent);
//将parent变黑,grandparent变红
parent->_col = BLACK;
Grandparent->_col = RED;
break;
}
}
//和上面相反
else
{
Node* uncle = Grandparent->_left;
//第一种情况
if (uncle&&uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
Grandparent->_col = RED;
cur = Grandparent;
parent = cur->_parent;
}
//第二种情况
else
{
//第三种情况 转换为第二种情况
if (parent->_left == cur)
{
RotateR(parent);
swap(parent, cur);
}
RotateL(Grandparent);
parent->_col = BLACK;
Grandparent->_col = RED;
break;
}
}
}
_root->_col = BLACK;
return true;
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
bool IsBlance()
{
if (_root == NULL)
return true;
//第2条规则:根节点是黑色的
//判断根节点
if (_root->_col == RED)
{
return false;
}
Node* cur = _root;
int k = 0;
while (cur)
{
//第4条规则:每条路径的黑色节点的数量相等
//统计每个左右子树黑色节点的个数
if (cur->_col == BLACK)
{
k++;
}
cur = cur->_left;
}
int count = 0;
return _IsBlance(_root,k,count);
}
protected:
Node* _root;
void _InOrder(Node* root)
{
if (root == NULL)
return;
_InOrder(root->_left);
cout << root->_key << " ";
_InOrder(root->_right);
}
bool _IsBlance(Node* root,const int k,int count)
{
if (root == NULL)
return true;
//第3条规则:没有连续的红节点
if (root->_col == RED)
{
if (root->_parent->_col == RED)
{
cout << "颜色不对" << root->_key << endl;
return false;
}
}
//统计黑色节点
else
{
++count;
}
if (root->_left == NULL&&root->_right)
{
if (count == k)
return true;
else
{
cout << "黑色节点数量不相同" << root->_key << endl;
return false;
}
}
return _IsBlance(root->_left, k, count) && _IsBlance(root->_right, k, count);
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
{
subRL->_parent = parent;
}
Node* ppNode = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (ppNode == NULL)
{
_root = subR;
subR->_parent = NULL;
}
else
{
subR->_parent = ppNode;
if (ppNode->_left == parent)
{
ppNode->_left = subR;
}
else
{
ppNode->_right = subR;
}
}
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
{
subLR->_parent = parent;
}
Node* ppNode = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (ppNode == NULL)
{
_root = subL;
subL->_parent = NULL;
}
else
{
subL->_parent = ppNode;
if (ppNode->_left == parent)
{
ppNode->_left = subL;
}
else
{
ppNode->_right = subL;
}
}
}
};
int main()
{
int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
RBTree<int, int> rbt;
for (int i = 0; i < sizeof(a) / sizeof(a[0]); i++)
{
rbt.Insert(a[i],i);
cout <<a[i]<< " Is Blance ?" << rbt.IsBlance() << endl;
}
rbt.InOrder();
cout<<"Is Blance ?"<<rbt.IsBlance()<<endl;
system("pause");
return 0;
}本文出自 “sunshine225” 博客,请务必保留此出处http://10707460.blog.51cto.com/10697460/1828120
原文地址:http://10707460.blog.51cto.com/10697460/1828120