码迷,mamicode.com
首页 > 其他好文 > 详细

hdu 5185(动态规划)

时间:2016-07-21 12:44:12      阅读:132      评论:0      收藏:0      [点我收藏+]

标签:

Equation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 500    Accepted Submission(s): 168


Problem Description
Gorwin is very interested in equations. Nowadays she gets an equation like this
x1+x2+x3+?+xn=n, and here
0xinfor1inxixi+1xi+1for1in1

For a certain n, Gorwin wants to know how many combinations of xi satisfies above condition.
For the answer may be very large, you are expected output the result after it modular m.
 

 

Input
Multi test cases. The first line of the file is an integer T indicates the number of test cases.
In the next T lines, every line contain two integer n,m.

[Technical Specification]
1T<20
1n50000
1m1000000000
 

 

Output
For each case output should occupies one line, the output format is Case #id: ans, here id is the data number starting from 1, ans is the result you are expected to output.
See the samples for more details.
 

 

Sample Input
2 3 100 5 100
 

 

Sample Output
Case #1: 2 Case #2: 3
 

 

Source
 
 
题意:求解满足条件的 x1+x2+ ... +xn = n 的种类数。
题解:设计状态为 dp[i][j] 1- i 种数组成 j 的方案数。首先,我们可以确定 xi 的最大值为 1+2...+k = n 里面这个 k ,这样就可以将 dp[i][j]中的 i 确定成 k 了.然后 dp方程是 dp[i][j] = dp[i][j-i]+dp[i-1][j-i] 代表当选择第 i 种数的时候,前面要么选择 i 要么选择 i-1 。。然后最后再求一次和就可以了。
#include <iostream>
#include <cstdio>
#include <string.h>
#include <queue>
#include <algorithm>
#include <math.h>
using namespace std;
int dp[320][50005];
int main()
{
    int tcase,t=1;
    scanf("%d",&tcase);
    while(tcase--){
        int n,m;
        scanf("%d%d",&n,&m);
        int k = 0;
        while(k*(k+1)<=2*n) k++;
        memset(dp,0,sizeof(dp));
        dp[0][0] = 1;
        for(int i=1;i<=k;i++){
            for(int j=i;j<=n;j++){
                dp[i][j] = (dp[i][j-i]+dp[i-1][j-i])%m;
            }
        }
        int ans = 0;
        for(int i=1;i<=k;i++){
            ans = (ans+dp[i][n])%m;
        }
        printf("Case #%d: %d\n",t++,ans);
    }
    return 0;
}

 

hdu 5185(动态规划)

标签:

原文地址:http://www.cnblogs.com/liyinggang/p/5691186.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!