码迷,mamicode.com
首页 > 其他好文 > 详细

opencv——检测四边形的四个角点

时间:2016-07-21 13:05:16      阅读:1193      评论:0      收藏:0      [点我收藏+]

标签:

#include "stdio.h"  
#include "cv.h"  
#include "highgui.h"  
#include "Math.h"
#define max_corners 4

#define C CV_PI /3
int Otsu(IplImage* src);

int main(int argc, char*argv[])
{
    IplImage* img = cvLoadImage("C:\\Users\\aoe\\Desktop\\xiangmu10\\fffffffff.jpg", 0);
    cvNamedWindow("img", 1);
    cvShowImage("img", img);
    IplImage* dst = cvCreateImage(cvGetSize(img), 8, 1);
    int threshold = Otsu(img);//最大类间方差阈值分割
    printf("threshold = %d\n", threshold);
    cvThreshold(img, dst, threshold, 255, CV_THRESH_BINARY);

    cvNamedWindow("dst", 1);
    cvShowImage("dst", dst);
    CvRect roi = cvRect(30, 30,120,120);//去除复杂背景

    IplImage* img1 = cvCreateImage(cvGetSize(dst), dst->depth, dst->nChannels);
    for (int y = 0; y < img1->height; y++)
    {
        for (int x = 0; x < img1->width; x++)
        {
            CvScalar cs = (255);
            cvSet2D(img1, y, x, cs);
        }
    }
    CvRect roi1 = cvRect(30, 30, 120, 120);
    cvNamedWindow("img1");
    cvShowImage("img1", img1);

    cvSetImageROI(dst, roi);
    cvSetImageROI(img1, roi1);
    cvCopy(dst, img1);
    cvResetImageROI(dst);
    cvResetImageROI(img1);

    cvNamedWindow("result", 1);
    cvShowImage("result", img1);

    IplImage*edge = cvCreateImage(cvGetSize(img1), 8, 1);//canny边缘检测
    int edgeThresh = 1;
    cvCanny(img1, edge, edgeThresh, edgeThresh * 3, 3);

    cvNamedWindow("canny", 1);
    cvShowImage("canny", edge);
    int count = 0;
    for (int yy = 0; yy < edge->height; yy++)//统计边缘图像中共有多少个黑色像素点
    {
        for (int xx = 0; xx < edge->width; xx++)
        {
            //CvScalar ss = (255);
            double ds = cvGet2D(edge, yy, xx).val[0];
            if (ds == 0)
                count++;
        }
    }
    int dianshu_threshold = (176*144-count)/ 4;//将白色像素点数的四分之一作为hough变换的阈值
    IplImage* houghtu = cvCreateImage(cvGetSize(edge), IPL_DEPTH_8U, 1);//hough直线变换
    CvMemStorage*storage = cvCreateMemStorage();
    CvSeq*lines = 0;
    int i,j,k,m,n;
    while (true)//循环找出合适的阈值,使检测到的直线的数量在8-12之间
    {
        lines = cvHoughLines2(edge, storage, CV_HOUGH_STANDARD, 1, CV_PI / 180, dianshu_threshold, 0, 0);
        int line_number = lines->total;
        if (line_number <8)
        {
            dianshu_threshold = dianshu_threshold - 2;
        }
        else if (line_number > 12)
        {
            dianshu_threshold = dianshu_threshold +1;
        }
        else
        {
            printf("line_number=%d\n", line_number);
            break;
        }
    }

    int A = 10;
    double B = CV_PI / 10;

    while (1)
    {
        for (i = 0; i <lines->total; i++)//将多条非常相像的直线剔除
        {
            for (j = 0; j < lines->total; j++)
            {
                if (j != i)
                {
                    float*line1 = (float*)cvGetSeqElem(lines, i);
                    float*line2 = (float*)cvGetSeqElem(lines, j);
                    float rho1 = line1[0];
                    float threta1 = line1[1];
                    float rho2 = line2[0];
                    float threta2 = line2[1];
                    if (abs(rho1 - rho2) < A && abs(threta1 - threta2) < B)
                        cvSeqRemove(lines, j);
                }
            }
        }
        if (lines->total > 4)//剔除一圈后如何直线的数量大于4,则改变A和B,继续删除相似的直线
        {
            A = A + 1;
            B = B + CV_PI / 180;
        }
        else
        {
            printf("lines->total=%d\n", lines->total);
            break;
        }
    }




    for (k= 0; k < lines->total; k++)//画出直线
    {
        float*line = (float*)cvGetSeqElem(lines, k);
        float rho = line[0];//r=line[0]
        float threta = line[1];//threta=line[1]
        CvPoint pt1, pt2;
        double a = cos(threta), b = sin(threta);
        double x0 = a*rho;
        double y0 = b*rho;
        pt1.x = cvRound(x0 + 100 * (-b));//定义直线的终点和起点,直线上每一个点应该满足直线方程r=xcos(threta)+ysin(threta);
        pt1.y = cvRound(y0 + 100 * (a));
        pt2.x = cvRound(x0 - 1200 * (-b));
        pt2.y = cvRound(y0 - 1200 * (a));
        cvLine(houghtu, pt1, pt2, CV_RGB(0, 255, 255), 1, 8);
    }
    int num = 0;
    CvPoint arr[8] = { { 0, 0 } };
    for (m = 0; m < lines->total; m++)//画出直线的交点
    {
        for (n = 0; n < lines->total; n++)
        {
            if (n!= m)
            {
                float*Line1 = (float*)cvGetSeqElem(lines,m);
                float*Line2 = (float*)cvGetSeqElem(lines,n);
                float Rho1 = Line1[0];
                float Threta1 = Line1[1];
                float Rho2 =Line2[0];
                float Threta2 = Line2[1];
                if (abs(Threta1 - Threta2) > C)
                {
                    double a1 = cos(Threta1), b1 = sin(Threta1);
                    double a2 = cos(Threta2), b2 = sin(Threta2);
                    CvPoint pt;
                    pt.x = (Rho2*b1 - Rho1*b2) / (a2*b1 - a1*b2);//直线交点公式
                    pt.y = (Rho1 - a1*pt.x) / b1;
                    cvCircle(houghtu, pt, 3, CV_RGB(255, 255, 0));
                    arr[num++] = pt;//将点的坐标保存在一个数组中
                }
            }

        }
    }
    printf("num=%d\n", num);
    printf("arr[0].x=%d\n", arr[0].x);
    printf("arr[0].y=%d\n", arr[0].y);
    printf("arr[1].x=%d\n", arr[1].x);
    printf("arr[1].y=%d\n", arr[1].y);
    printf("arr[2].x=%d\n", arr[2].x);
    printf("arr[2].y=%d\n", arr[2].y);
    printf("arr[3].x=%d\n", arr[3].x);
    printf("arr[3].y=%d\n", arr[3].y);
    printf("arr[4].x=%d\n", arr[4].x);
    printf("arr[4].y=%d\n", arr[4].y);
    printf("arr[5].x=%d\n", arr[5].x);
    printf("arr[5].y=%d\n", arr[5].y);
    printf("arr[6].x=%d\n", arr[6].x);
    printf("arr[6].y=%d\n", arr[6].y);
    printf("arr[7].x=%d\n", arr[7].x);
    printf("arr[7].y=%d\n", arr[7].y);

    CvPoint arr1[8] = { { 0, 0 } };//将重复的角点剔除
    int num1 = 0;
    for (int r = 0; r < 8; r++)
    {
        int s = 0;
        for (; s < num1; s++)
        {
            if (abs(arr[r].x - arr1[s].x) <= 2 && abs(arr[r].y - arr1[s].y) <= 2)
                break;
        }
        if (s == num1)
        {
            arr1[num1] = arr[r];
            num1++;
        }

    }


    printf("num1=%d\n", num1);
    printf("arr1[0].x=%d\n", arr1[0].x);
    printf("arr1[0].y=%d\n", arr1[0].y);
    printf("arr1[1].x=%d\n", arr1[1].x);
    printf("arr1[1].y=%d\n", arr1[1].y);
    printf("arr1[2].x=%d\n", arr1[2].x);
    printf("arr1[2].y=%d\n", arr1[2].y);
    printf("arr1[3].x=%d\n", arr1[3].x);
    printf("arr1[3].y=%d\n", arr1[3].y);
    printf("arr1[4].x=%d\n", arr1[4].x);
    printf("arr1[4].y=%d\n", arr1[4].y);
    printf("arr1[5].x=%d\n", arr1[5].x);
    printf("arr1[5].y=%d\n", arr1[5].y);
    printf("arr1[6].x=%d\n", arr1[6].x);
    printf("arr1[6].y=%d\n", arr1[6].y);
    printf("arr1[7].x=%d\n", arr1[7].x);
    printf("arr1[7].y=%d\n", arr1[7].y);

    for (int w = 0; w < 4; w++)
    {
        CvPoint ps;
        ps = arr1[w];
        cvCircle(img, ps, 3, CV_RGB(255,0,0));
    }
    cvNamedWindow("img", 1);
    cvShowImage("img", img);
    cvNamedWindow("houghtu", 1);
    cvShowImage("houghtu", houghtu);
    cvWaitKey(-1);

    cvReleaseImage(&img);
    cvReleaseImage(&dst);


    cvDestroyWindow("dst");
    return 0;
}


int Otsu(IplImage* src)
{
    int height = src->height;
    int width = src->width;

    //histogram    
    float histogram[256] = { 0 };
    for (int i = 0; i < height; i++)
    {
        unsigned char* p = (unsigned char*)src->imageData + src->widthStep * i;
        for (int j = 0; j < width; j++)
        {
            histogram[*p++]++;
        }
    }
    //normalize histogram    
    int size = height * width;
    for (int i = 0; i < 256; i++)
    {
        histogram[i] = histogram[i] / size;
    }

    //average pixel value    
    float avgValue = 0;
    for (int i = 0; i < 256; i++)
    {
        avgValue += i * histogram[i];  //整幅图像的平均灰度  
    }

    int threshold;
    float maxVariance = 0;
    float w = 0, u = 0;
    for (int i = 0; i < 256; i++)
    {
        w += histogram[i];  //假设当前灰度i为阈值, 0~i 灰度的像素(假设像素值在此范围的像素叫做前景像素) 所占整幅图像的比例  
        u += i * histogram[i];  // 灰度i 之前的像素(0~i)的平均灰度值: 前景像素的平均灰度值  

        float t = avgValue * w - u;
        float variance = t * t / (w * (1 - w));
        if (variance > maxVariance)
        {
            maxVariance = variance;
            threshold = i;
        }
    }

    return threshold;
}

技术分享

主要思想:最大阈值分割——去掉周围嘈杂背景——canny边缘检测——hough变换——求直线交点

opencv——检测四边形的四个角点

标签:

原文地址:http://blog.csdn.net/yanxiaopan/article/details/51980751

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!