标签:style blog http color os io for 2014
题意:给定一个NxMxP的三维网格,每个格子上一盏灯,现在每次随机选择两点,把这两点构成立方体中间那一块开关灯状态转换,问K步之后网格中亮灯的期望
思路:概率问题,把x,y,z轴分开考虑,算出每一个点xi,yi,zi分别能被选到的情况数,然后根据乘法原理相乘起来除以总情况就能算出一点的概率,然后问题就是K次了,对于K次,每次开到的概率为P的情况下,总情况为∑k1Pi(1?P)k?ii为奇数,那么根据组合公式很容易化简为:
==》((1?p+p)k?(1?p?p)k)/2
==》(1?(1?2p)k)/2
然后对于每个点的期望加起来就是答案了
代码:
#include <cstdio>
#include <cstring>
#include <cmath>
int t, n, m, p, K;
double cal(double P) {
return (1 - pow(1 - 2 * P, K)) / 2;
}
double solve() {
double ans = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
for (int k = 1; k <= p; k++) {
int x = (n - i + 1) * i;
int y = (m - j + 1) * j;
int z = (p - k + 1) * k;
double P = (2 * x * 1.0 - 1) / (m * n * p) * (2 * y - 1) / (m * n * p) * (2 * z - 1);
ans += cal(P);
}
}
}
return ans;
}
int main() {
int cas = 0;
scanf("%d", &t);
while (t--) {
scanf("%d%d%d%d", &n, &m, &p, &K);
printf("Case %d: %.10lf\n", ++cas, solve());
}
return 0;
}UVA 11605 - Lights inside a 3d Grid(概率+数学),布布扣,bubuko.com
UVA 11605 - Lights inside a 3d Grid(概率+数学)
标签:style blog http color os io for 2014
原文地址:http://blog.csdn.net/accelerator_/article/details/38409585