码迷,mamicode.com
首页 > 其他好文 > 详细

POJ3641 (快速幂) 判断a^p = a (mod p)是否成立

时间:2016-07-23 16:39:38      阅读:287      评论:0      收藏:0      [点我收藏+]

标签:

Description

Fermat‘s theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes

如果p是素数,输出no;如果p不是素数,判断a^p对p取余是否等于a。
 1 #include<cstdio>
 2 #include<math.h>
 3 __int64 f(__int64 a,__int64 b)
 4 {
 5     __int64 c=b,t=1;
 6     while(b)
 7     {
 8         if(b % 2 != 0)
 9         {
10             t=t*a%c;
11         }
12         a=a*a%c;
13         b/=2;
14     }
15     return t%c;
16 }
17 __int64 f2(__int64 a)
18 {
19     __int64 i;
20     if(a <= 1 || a % 2 == 0) return 0;
21     for(i=3;i<=sqrt(a);i++)
22     {
23         if(a % i == 0) return 0;
24     }
25     return 1;
26 }
27 int main()
28 {
29     
30     __int64 p,a;
31     while(scanf("%I64d %I64d",&p,&a) && p && a)
32     {
33         if(f2(p) == 1) printf("no\n");
34         else
35         {
36             if(f(a,p) == a) printf("yes\n");
37             else 
38             printf("no\n");
39         }
40         
41     }
42 }

 

 

POJ3641 (快速幂) 判断a^p = a (mod p)是否成立

标签:

原文地址:http://www.cnblogs.com/yexiaozi/p/5698795.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!