标签:红黑树
红黑树是一棵二叉搜索树,它在每个节点上增加了一个存储位来表示节点的颜色,可以是Red或Black。通过对任何一条从根到叶子简单路径上的颜色来约束,红黑树保证最长路径不超过最短路径的两倍,因而近似于平衡。
红黑树是满足下面红黑性质的二叉搜索树:
(1)每个节点,不是红色就是黑色的。
(2)根节点是黑色的。
(3)如果一个节点是红色的,则它的两个子节点是黑色的(没有连续的红节点)。
(4)对每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。(每条路径的黑色节点的数量相等)
(5)每个空节点都是黑色的。
插入的几种情况
ps:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点。
(1)第一种情况
cur为红,p为红,g为黑,u存在且为红。
则将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。
(2)第二种情况
cur为红,p为红,g为黑,u不存在/u为黑。
p为g的左孩子,cur为p的左孩子,则进行右单旋。
转;相反,p为g的右孩子,cur为p的右孩子,则进 行左单旋转。p、g变色--p变黑,g变红。
(3)第三种情况
cur为红,p为红,g为黑,u不存在/u为黑。
p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,p为g的右孩子,cur为p的左孩子,则针对p做右单旋转,则转换成了情况2。
代码实现:
#include<iostream>
using namespace std;
enum Color
{
RED,
BLACK
};
template<class K,class V>
struct RBTreeNode{
RBTreeNode<K, V>* _left;
RBTreeNode<K, V>* _right;
RBTreeNode<K, V>* _parent;
K _key;
V _value;
Color _col; //节点的颜色
RBTreeNode(const K& key, const V& value)
:_left(NULL)
, _right(NULL)
, _parent(NULL)
, _key(key)
, _value(value)
, _col(RED)
{}
};
template<class K,class V>
class RBTree{
typedef RBTreeNode<K, V> Node;
public:
RBTree()
:_root(NULL)
{}
bool Insert(const K& key, const V& value)
{
if (_root == NULL)
{
_root = new Node(key,value);
_root->_col = BLACK;
return true;
}
Node* cur = _root;
Node* parent = NULL;
while (cur)
{
if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else
{
return false;
}
}
cur = new Node(key, value);
if (parent->_key > key)
{
parent->_left = cur;
cur->_parent = parent;
}
else
{
parent->_right = cur;
cur->_parent = parent;
}
while (cur != _root&&parent->_col == RED)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
//第1种情况
if (uncle&&uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
//继续向上调整
cur = grandfather;
parent = cur->_parent;
}
else
{
//第3种情况转换成第2种情况
if (cur == parent->_right)
{
_RotateL(parent);
swap(parent,cur);
}
//第2种情况
_RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
break;
}
}
else //parent=grandfather->_right
{
Node* uncle = grandfather->_left;
//第1种情况
if (uncle&&uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
//向上继续调整
cur = grandfather;
parent = cur->_parent;
}
else
{
//第3种情况
if (cur == parent->_left)
{
_RotateR(parent);
swap(parent,cur);
}
//第2种情况
_RotateL(grandfather);
grandfather->_col = RED;
parent->_col = BLACK;
break;
}
}
}
_root->_col = BLACK;
return true;
}
Node* Find(const K& key)
{
if (_root == NULL)
return NULL;
Node* cur = _root;
while (cur)
{
if (cur->_key > key)
cur = cur->_left;
else if (cur->_key < key)
cur = cur->_right;
else
return cur;
}
return NULL;
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
bool IsBlance()
{
if (_root == NULL)
return true;
if (_root->_col == RED)
return false;
int k = 0;
Node* cur = _root;
while (cur)
{
if (cur->_col == BLACK)
++k;
cur = cur->_left;
}
int count = 0;
return _IsBlance(_root,k,count);
}
protected:
void _RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
subL->_right = parent;
Node* ppNode = parent->_parent;
parent->_parent = subL;
if (ppNode == NULL)
{
_root = subL;
subL->_parent = NULL;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subL;
subL->_parent = ppNode;
}
else
{
ppNode->_right = subL;
subL->_parent = ppNode;
}
}
}
void _RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
subR->_left = parent;
Node* ppNode = parent->_parent;
parent->_parent = subR;
if (ppNode == NULL)
{
_root = subR;
subR->_parent = NULL;
}
else
{
if (ppNode->_left == parent)
{
ppNode->_left = subR;
subR->_parent = ppNode;
}
else
{
ppNode->_right = subR;
subR->_parent = ppNode;
}
}
}
void _InOrder(Node* root)
{
if (root == NULL)
{
return;
}
_InOrder(root->_left);
cout << root->_key << " ";
_InOrder(root->_right);
}
bool _IsBlance(Node* root, const int k, int count)
{
if (root == NULL)
return true;
//规则3:没有连续的红节点
if (root->_col == RED&&root->_parent->_col == RED)
{
cout << "出现连续的红色节点" << root->_key<<endl;
return false;
}
if (root->_col == BLACK)
++count;
//规则4:每条路径的黑色节点的数量相等
if (root->_left == NULL&&root->_right == NULL&&count != k)
{
cout << "黑色节点个数不相等" << root->_key<<endl;
return false;
}
return _IsBlance(root->_left, k, count) && _IsBlance(root->_right, k, count);
}
protected:
Node* _root;
};
#include "RBTree.h"
void Test1()
{
int a[] ={16, 3, 7, 11, 9, 26, 18, 14, 15};
RBTree<int, int> rbt;
for (int i = 0; i < sizeof(a) / sizeof(a[0]); ++i)
{
rbt.Insert(a[i],i);
}
rbt.InOrder();
cout << rbt.IsBlance() << endl;
RBTreeNode<int, int>* ret1=rbt.Find(15);
if (ret1)
{
cout << ret1->_key << ":" << ret1->_value << endl;
}
else
{
cout << "没有找到ret1" << endl;
}
RBTreeNode<int, int>* ret2 = rbt.Find(8);
if (ret2)
{
cout << ret2->_key << ":" << ret2->_value << endl;
}
else
{
cout << "没有找到ret2" << endl;
}
}
int main()
{
Test1();
return 0;
}运行结果:
本文出自 “zwy” 博客,请务必保留此出处http://10548195.blog.51cto.com/10538195/1829211
标签:红黑树
原文地址:http://10548195.blog.51cto.com/10538195/1829211