码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习讨论组纪要1

时间:2016-07-29 18:34:36      阅读:152      评论:0      收藏:0      [点我收藏+]

标签:

机器学习分类

精确学习  符号学习: 例子: 爸爸*爸爸=爷爷。 80 90 年代研究热点。现在基本已经不再研究。

模糊学习 归纳,基于数据做统计。因为大数据技术的发展而变得火热。

 

模糊学习的分类

数据-归纳,训练-模型-对新的数据,得出结论

督导学习 无督导学习

 

督导学习 标记

无督导 聚类 

 

常见的机器学习的方法

线性回归是最基本的机器学习算法

 

房屋面积 房价  一组数据。 给出新的房屋面积,预测房价

 

回归与分类 

Regression Classification

 

逻辑回归(分类) 置信度 

线性回归可以通过sigmoid与逻辑回归统一起来。

 

神经元:每一个神经元就是一个线性回归函数。

神经网络:神经元连在一起就是神经网络

深度学习: 神经网络的层数,一般的机器学习的神经网络的层数大概在3 4 层,而深度学习的深度神经元网络可以达到70 80 层,仅模型本身,就可以达到几个G的大小。 

神经网络,根基还是线性回归

 

决策树

概率方法 : 贝叶斯网络?

 

简单的机器学习case 

email 优先级判断问题:

线性可分问题,也就是说很多问题可能不是一个线性回归可以解决的问题:

feature维度越高,越大可能线性可分。

 

可以采用online逻辑回归算法(PA2),判断email是否是高优先级的。

 

一个common的问题:如何针对不同的场景(输入数据的特点),选择不同的机器学习的算法?

 

feature生成 选取 ,目前还是依赖于人的直观选择

但是这些选取的feature维度可以使用一些方法进行处理,比如:升维度 降维度(防止过度拟合,把相近的feature cluster) 离散化(年龄划分为青年中年老年等)

 

模型的调优

训练集 验证集 测试集

调优的指标:

查准率 查全率 误分类代价

 

有了模型,才可以真正进行code层级的机器学习,从而涉及到下面的问题:

编程语言?机器学习平台

常见的平台:Spark MLlib

常见的语言:Scala Java python R

机器学习讨论组纪要1

标签:

原文地址:http://www.cnblogs.com/hzg1981/p/5718501.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!