标签:矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575
题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
一个矩阵快速幂的裸题。
题解:
#include<iostream>
#include<stdio.h>
#include<cstring>
#define Mod 9973
using namespace std;
const int MAX = 11;
struct Matrix
{
int v[MAX][MAX];
};
int n, k, M;
Matrix mtMul(Matrix A, Matrix B) // 求矩阵 A * B
{
int i, j, k;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
{
C.v[i][j] = 0;
for(k = 0; k < n; k ++)
C.v[i][j] = (A.v[i][k] * B.v[k][j] + C.v[i][j]) % Mod;
}
return C;
}
Matrix mtPow(Matrix A, int k) // 求矩阵 A ^ k
{
if(k == 0)
{
memset(A.v, 0, sizeof(A.v));
for(int i = 0; i < n; i ++)
A.v[i][i] = 1;
return A;
}
if(k == 1) return A;
Matrix C = mtPow(A, k / 2);
if(k % 2 == 0)
return mtMul(C, C);
else
return mtMul(mtMul(C, C), A);
}
int solv (Matrix A)
{
int ans=0;
for(int i=0;i<n;i++)
ans+=A.v[i][i]%Mod;
return ans;
}
void out(Matrix A)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
printf("%d ",A.v[i][j]);
cout<<endl;
}
}
int main ()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
Matrix A;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
scanf("%d",&A.v[i][j]);
Matrix ans;
ans=mtPow(A,k);
//out(ans);
cout<<solv(ans)%Mod<<endl;
}
}
矩阵十题【二】 poj 1575 Tr A 【矩阵】,布布扣,bubuko.com
标签:矩阵快速幂
原文地址:http://blog.csdn.net/u010468553/article/details/38413997