标签:
一般地,关注于逻辑数据关系的协议通常被称为上层协议,而关注于物理数据流的协议通常被称为低层协议。
IEEE802就是一套用来管理物理数据流在局域网中传输的标准,包括在局域网中传输物理数据的802.3以太网标准。还有一些用来管理物理数据流在使用串行介质的广域网中传输的标准,如帧中继FR(FrameRelay),高级数据链路控制HDLC(High-LevelDataLinkControl),异步传输模式ATM(AsynchronousTransferMode)。
国际标准化组织ISO于1984年提出了OSIRM(OpenSystemInterconnectionReferenceModel,开放系统互连参考模型)。OSI参考模型很快成为了计算机网络通信的基础模型。
OSI参考模型具有以下优点:简化了相关的网络操作;提供了不同厂商之间的兼容性;促进了标准化工作;结构上进行了分层;易于学习和操作。
OSI参考模型各个层次的基本功能如下:
TCP/IP模型同样采用了分层结构,层与层相对独立但是相互之间也具备非常密切的协作关系。
TCP/IP模型将网络分为四层。TCP/IP模型不关注底层物理介质,主要关注终端之间的逻辑数据流转发。TCP/IP模型的核心是网络层和传输层:网络层解决网络之间的逻辑转发问题,传输层保证源端到目的端之间的可靠传输。最上层的应用层通过各种协议向终端用户提供业务应用。
应用数据需要经过TCP/IP每一层处理之后才能通过网络传输到目的端,每一层上都使用该层的协议数据单元PDU(ProtocolDataUnit)彼此交换信息。
如上层数据在传输层添加TCP报头后得到的PDU被称为Segment(数据段);数据段被传递给网络层,网络层添加IP报头得到的PDU被称为Packet(数据包);数据包被传递到数据链路层,封装数据链路层报头得到的PDU被称为Frame(数据帧);最后,帧被转换为比特,通过网络介质传输。这种协议栈逐层向下传递数据,并添加报头和报尾的过程称为封装。
数据包在以太网物理介质上传播之前必须封装头部和尾部信息。封装后的数据包称为称为数据帧,数据帧中封装的信息决定了数据如何传输。以太网上传输的数据帧有两种格式,选择哪种格式由TCP/IP协议簇中的网络层决定。
以太网上使用两种标准帧格式。第一种是上世纪80年代初提出的DIXv2格式,即EthernetII帧格式。EthernetII后来被IEEE802标准接纳,并写进了IEEE802.3x-1997的3.2.6节。第二种是1983年提出的IEEE802.3格式。
这两种格式的主要区别在于,EthernetII格式中包含一个Type字段,标识以太帧处理完成之后将被发送到哪个上层协议进行处理。IEEE802.3格式中,同样的位置是长度字段。
不同的Type字段值可以用来区别这两种帧的类型,当Type字段值小于等于1500(或者十六进制的0x05DC)时,帧使用的是IEEE802.3格式。当Type字段值大于等于1536(或者十六进制的0x0600)时,帧使用的是EthernetII格式。以太网中大多数的数据帧使用的是EthernetII格式。
以太帧中还包括源和目的MAC地址,分别代表发送者的MAC和接收者的MAC,此外还有帧校验序列字段,用于检验传输过程中帧的完整性。
Ethernet_II的帧中各字段说明如下:
EEE802.3帧格式类似于Ethernet_II帧,只是Ethernet_II帧的Type域被802.3帧的Length域取代,并且占用了Data字段的8个字节作为LLC和SNAP字段。
以太网在二层链路上通过MAC地址来唯一标识网络设备,并且实现局域网上网络设备之间的通信。MAC地址也叫物理地址,大多数网卡厂商把MAC地址烧入了网卡的ROM中。发送端使用接收端的MAC地址作为目的地址。以太帧封装完成后会通过物理层转换成比特流在物理介质上传输。
网络设备的MAC地址是全球唯一的。MAC地址长度为48比特,通常用十六进制表示。MAC地址包含两部分:前24比特是组织唯一标识符(OUI,OrganizationallyUniqueIdentifier),由IEEE统一分配给设备制造商。
例如,华为的网络产品的MAC地址前24比特是0x00e0fc。后24位序列号是厂商分配给每个产品的唯一数值,由各个厂商自行分配(这里所说的产品可以是网卡或者其他需要MAC地址的设备)。
局域网上的帧可以通过三种方式发送。第一种是单播,指从单一的源端发送到单一的目的端。每个主机接口由一个MAC地址唯一标识,MAC地址的OUI中,第一字节第8个比特表示地址类型。对于主机MAC地址,这个比特固定为0,表示目的MAC地址为此MAC地址的帧都是发送到某个唯一的目的端。在冲突域中,所有主机都能收到源主机发送的单播帧,但是其他主机发现目的地址与本地MAC地址不一致后会丢弃收到的帧,只有真正的目的主机才会接收并处理收到的帧。
第二种发送方式是广播,表示帧从单一的源发送到共享以太网上的所有主机。广播帧的目的MAC地址为十六进制的FFFFFF:FF,所有收到该广播帧的主机都要接收并处理这个帧。
广播方式会产生大量流量,导致带宽利用率降低,进而影响整个网络的性能。
当需要网络中的所有主机都能接收到相同的信息并进行处理的情况下,通常会使用广播方式。
第三种发送方式为组播,组播比广播更加高效。组播转发可以理解为选择性的广播,主机侦听特定组播地址,接收并处理目的MAC地址为该组播MAC地址的帧。
组播MAC地址和单播MAC地址是通过第一字节中的第8个比特区分的。组播MAC地址的第8个比特为1,而单播MAC地址的第8个比特为0。
当需要网络上的一组主机(而不是全部主机)接收相同信息,并且其他主机不受影响的情况下通常会使用组播方式。
帧从主机的物理接口发送出来后,通过传输介质传输到目的端。共享网络中,这个帧可能到达多个主机。主机检查帧头中的目的MAC地址,如果目的MAC地址不是本机MAC地址,也不是本机侦听的组播或广播MAC地址,则主机会丢弃收到的帧。
如果目的MAC地址是本机MAC地址,则接收该帧,检查帧校验序列(FCS)字段,并与本机计算的值对比来确定帧在传输过程中是否保持了完整性。如果帧的FCS值与本机计算的值不同,主机会认为帧已被破坏,并会丢弃该帧。如果该帧通过了FCS校验,则主机会根据帧头部中的Type字段来确定将帧发送给上层哪个协议处理。本例中,Type字段的值为0x0800,表明该帧需要发送到IP协议上处理。在发送给IP协议之前,帧的头部和尾部会被剥掉。
网络设备如何确定以太网数据帧的上层协议?
以太网帧中包含一个Type字段,表示帧中的数据应该发送到上层哪个协议处理。比如,IP协议对应的Type值为0x0800,ARP协议对应的Type值为0x0806。
终端设备接收到数据帧时,会如何处理?
主机检查帧头中的目的MAC地址,如果目的MAC地址不是本机MAC地址,也不是本机侦听的组播或广播MAC地址,则主机会丢弃收到的帧。如果目的MAC地址是本机MAC地址,则接收该帧,检查帧校验序列(FCS)字段,并与本机计算的值对比来确定帧在传输过程中是否保持了完整性。如果检查通过,就会剥离帧头和帧尾,然后根据帧头中的Type字段来决定把数据发送到哪个上层协议进行后续处理。
标签:
原文地址:http://www.cnblogs.com/hanqing/p/5719948.html