标签:
最近在看 Faster RCNN的Matlab code,发现很多matlab技巧,在此记录:
1. conf_proposal = proposal_config(‘image_means‘, model.mean_image, ‘feat_stride‘, model.feat_stride);
function conf = proposal_config(varargin)
% conf = proposal_config(varargin)
% --------------------------------------------------------
% Faster R-CNN
% Copyright (c) 2015, Shaoqing Ren
% Licensed under The MIT License [see LICENSE for details]
% --------------------------------------------------------
ip = inputParser ;
%% training
ip.addParamValue(‘use_gpu‘, gpuDeviceCount > 0, ...
@islogical);
% whether drop the anchors that has edges outside of the image boundary
ip.addParamValue(‘drop_boxes_runoff_image‘, ...
true, @islogical);
% Image scales -- the short edge of input image
ip.addParamValue(‘scales‘, 600, @ismatrix);
% Max pixel size of a scaled input image
ip.addParamValue(‘max_size‘, 1000, @isscalar);
% Images per batch, only supports ims_per_batch = 1 currently
ip.addParamValue(‘ims_per_batch‘, 1, @isscalar);
% Minibatch size
ip.addParamValue(‘batch_size‘, 256, @isscalar);
% Fraction of minibatch that is foreground labeled (class > 0)
ip.addParamValue(‘fg_fraction‘, 0.5, @isscalar);
% weight of background samples, when weight of foreground samples is
% 1.0
ip.addParamValue(‘bg_weight‘, 1.0, @isscalar);
% Overlap threshold for a ROI to be considered foreground (if >= fg_thresh)
ip.addParamValue(‘fg_thresh‘, 0.7, @isscalar);
% Overlap threshold for a ROI to be considered background (class = 0 if
% overlap in [bg_thresh_lo, bg_thresh_hi))
ip.addParamValue(‘bg_thresh_hi‘, 0.3, @isscalar);
ip.addParamValue(‘bg_thresh_lo‘, 0, @isscalar);
% mean image, in RGB order
ip.addParamValue(‘image_means‘, 128, @ismatrix);
% Use horizontally-flipped images during training ?
ip.addParamValue(‘use_flipped‘, true, @islogical);
% Stride in input image pixels at ROI pooling level (network specific)
% 16 is true for {Alex,Caffe}Net, VGG_CNN_M_1024, and VGG16
ip.addParamValue(‘feat_stride‘, 16, @isscalar);
% train proposal target only to labled ground-truths or also include
% other proposal results (selective search, etc.)
ip.addParamValue(‘target_only_gt‘, true, @islogical);
% random seed
ip.addParamValue(‘rng_seed‘, 6, @isscalar);
%% testing
ip.addParamValue(‘test_scales‘, 600, @isscalar);
ip.addParamValue(‘test_max_size‘, 1000, @isscalar);
ip.addParamValue(‘test_nms‘, 0.3, @isscalar);
ip.addParamValue(‘test_binary‘, false, @islogical);
ip.addParamValue(‘test_min_box_size‘,16, @isscalar);
ip.addParamValue(‘test_drop_boxes_runoff_image‘, ...
false, @islogical);
ip.parse(varargin{:});
conf = ip.Results;
assert(conf.ims_per_batch == 1, ‘currently rpn only supports ims_per_batch == 1‘);
% if image_means is a file, load it...
if ischar(conf.image_means)
s = load(conf.image_means);
s_fieldnames = fieldnames(s);
assert(length(s_fieldnames) == 1);
conf.image_means = s.(s_fieldnames{1});
end
end
The inputParser
object allows you to manage inputs to a function by creating an input scheme. To check the input, you can define validation functions for required arguments, optional arguments, and name-value pair arguments. Optionally, you can set properties to adjust the parsing behavior, such as handling case sensitivity, structure array inputs, and inputs that are not in the input scheme.
After calling the parse
method to parse the inputs, the inputParser
saves names and values of inputs that match the input scheme (stored in Results
), names of inputs that are not passed to the function and, therefore, are assigned default values (stored in UsingDefaults
), and names and values of inputs that do not match the input scheme (stored in Unmatched
).
Check the validity of required and optional function inputs.
Create a custom function with required and optional inputs in the file findArea.m.
function a = findArea(width,varargin)
p = inputParser;
defaultHeight = 1;
defaultUnits = ‘inches‘;
defaultShape = ‘rectangle‘;
expectedShapes = {‘square‘,‘rectangle‘,‘parallelogram‘};
addRequired(p,‘width‘,@isnumeric);
addOptional(p,‘height‘,defaultHeight,@isnumeric);
addParameter(p,‘units‘,defaultUnits);
addParameter(p,‘shape‘,defaultShape,...
@(x) any(validatestring(x,expectedShapes)));
parse(p,width,varargin{:});
a = p.Results.width .* p.Results.height;
The input parser checks whether width and height are numeric, and whether the shape matches a string in cell array expectedShapes. @ indicates a function handle, and the syntax @(x) creates an anonymous function with input x.
Call the function with inputs that do not match the scheme. For example, specify a nonnumeric value for the width input:
findArea(‘text‘)
Error using findArea (line 14)
The value of ‘width‘ is invalid. It must satisfy the function: isnumeric.
Specify an unsupported value for shape:
findArea(4,‘shape‘,‘circle‘)
Error using findArea (line 14)
The value of ‘shape‘ is invalid. Expected input to match one of these strings:
square, rectangle, parallelogram
The input, ‘‘circle‘‘, did not match any of the valid strings.
标签:
原文地址:http://www.cnblogs.com/wangxiaocvpr/p/5723312.html