标签:
题目链接:Lucky7
题意:求在l和r范围内,满足能被7整除,而且不满足任意一组,x mod p[i] = a[i]的数的个数。
思路:容斥定理+中国剩余定理+快速乘法。 (奇+ 偶-)
#include <stdio.h> #include <string.h> #include <iostream> using namespace std; #define LL long long #define FOR(i, n) for (int i=0; i<n; ++i) LL l, r; int extend_gcd(LL a, LL b, LL &x, LL &y) { if (b == 0) { x = 1; y = 0; return a; } else { int r = extend_gcd(b, a%b, y, x); y -= x*(a/b); return r; } } LL qMul(LL a, LL b, LL mod) { a %= mod; LL ret = 0; while(b) { if (b & 1) ret = (ret + a) % mod; b >>= 1; a = (a + a) % mod; } return ret; } LL CRT(LL *a, LL *m, int n) { LL M = 1; for (int i=0; i<n; ++i) M *= m[i]; LL x = 0; LL d, y; for (int i=0; i<n; ++i) { //LL d, y; LL tm = M/m[i]; extend_gcd(m[i], tm, d, y); x = (x + qMul( qMul(d, tm, M), a[i], M)) % M; // 参数传递有顺序 } x = (x + M) % M; return (r+M-x)/M - (l-1+M-x)/M; // 直接返回l r区间有多少个解。 } LL a[20], m[20]; LL chu[20], rema[20]; int main() { freopen("1.in.cpp", "r", stdin); int t; scanf("%d", &t); int cas = 0; while(t--) { int n; scanf("%d%lld%lld", &n, &l, &r); FOR(i, n) { scanf("%lld%lld", &chu[i], &rema[i]); } LL tot = (1<<n); LL ans = r/7 - (l-1)/7; for (int i=1; i<tot; ++i) { //cout << i << "++++\n"; int cnt = 0; FOR (j, n) { if (i&(1<<j)) { m[cnt] = chu[j]; a[cnt] = rema[j]; cnt++; } } m[cnt] = 7, a[cnt] = 0; cnt++; LL tans = CRT(a, m, cnt); cnt = (cnt&1) ? 1 : -1; ans += tans * cnt; } //cout << "++++\n"; printf("Case #%d: %I64d\n", ++cas, ans); } return 0; }
标签:
原文地址:http://www.cnblogs.com/icode-girl/p/5724211.html