标签:
今天开始讲下Catalyst,这是我们必须精通的内容之一:
catalyst是一种解析器引擎,而不仅是sql解析引擎。如果研究下catalyst,可以在当中非常方便的添加你想做的任意新的优化技术,在优化技巧方面可以随意的扩展。也很少有解析器像catalyst这样可以方便的增加新的数据类型。
catalyst的数据结构是棵树状结构,并有一系列的rules的解析规则。我们以前在很多语言开发的时候,都会解析成一颗语法树,catalyst是把sql和dataframe的内容用tree来存储。第二个层面,Catalyst中有一套解析规则,怎么对树进行解析和优化。
从jvm对内存的管理来说,内存中的所有object也是树状结构的,那catalyst用一棵树在存储的话,每个节点都是类的实例,都有0个或多个子节点,并且节点是不可变,只能把一棵树从一种状态transform到另一种状态。
Catalyst主要包含两点:
如何理解Tree数据结构:
比如表达式 x + (5 + 10),当中包含:
Literal:5 10
Attribute:x
Action:Add
可以用下图表示:
Catalyst中使用一系列的Rules来解析和优化Tree数据结构,对于上述的树状数据结构,优化过程可以如下,把常量合并在一起。由于表达式是一个对象,对象有类型,所以可以使用模式匹配,对于不认识的类型可以忽略,并且添加新的类型会很容易,导致了我们的扩展和操作非常的方便,只要不断执行匹配规则就行。当我们写优化规则的时候,只需要考虑不同的算子,根本就不用这棵树有多大。因为catalyst会循环运用我们的规则,只到这棵树不可以被解析和优化,这让我们会很方便改变规则,也会很方便优化引擎。
tree.tranform{
case Add(Literal(x),Literal(y)) => Literal(x+y)
case
...
}
一般来说分为六步:
从整个过程,我们可以看到在框架抽象的时候,并不是越底层越高效,因为如果能加入优化层次,会对开发者有很大的助力。
DT大数据每天晚上20:00YY频道现场授课频道68917580
标签:
原文地址:http://www.cnblogs.com/wangwg/p/5724730.html