码迷,mamicode.com
首页 > 其他好文 > 详细

布隆过滤器--空间效率很高的数据结构

时间:2016-08-01 15:17:00      阅读:132      评论:0      收藏:0      [点我收藏+]

标签:

一、先谈哈希

1.1原理

Hash (哈希,或者散列)函数在计算机领域,尤其是数据快速查找领域,加密领域用的极广。

其作用是将一个大的数据集映射到一个小的数据集上面(这些小的数据集叫做哈希值,或者散列值)。

1.2一个典型的hash函数示意图

技术分享

1.3特点

如果两个散列值是不相同的(根据同一函数),那么这两个散列值的原始输入也是不相同的。
散列函数的输入和输出不是唯一对应关系的,如果两个散列值相同,两个输入值很可能是相同的。但也可能不同,这种情况称为 “散列碰撞”(或者 “散列冲突”)。

1.4缺点

引用吴军博士的《数学之美》中所言,哈希表的空间效率还是不够高。如果用哈希表存储一亿个垃圾邮件地址,每个email地址 对应 8bytes, 而哈希表的存储效率一般只有50%,因此一个email地址需要占用16bytes. 因此一亿个email地址占用1.6GB,如果存储几十亿个email address则需要上百GB的内存。除非是超级计算机,一般的服务器是无法存储的。

二、布隆过滤器

2.1原理

如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间越来越大。同时检索速度也越来越慢。

Bloom Filter 是一种空间效率很高的随机数据结构,Bloom filter 可以看做是对 bit-map 的扩展, 它的原理是:
当一个元素被加入集合时,通过 K 个 Hash 函数将这个元素映射成一个位阵列(Bit array)中的 K 个点,把它们置为 1。检索时,我们只要看看这些点是不是都是 1 就(大约)知道集合中有没有它了:
如果这些点有任何一个 0,则被检索元素一定不在;
如果都是 1,则被检索元素很可能在。

2.2优点

它的优点是空间效率和查询时间都远远超过一般的算法,布隆过滤器存储空间和插入 / 查询时间都是常数O(k)。另外, 散列函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势

2.3缺点

但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。
(误判补救方法是:再建立一个小的白名单,存储那些可能被误判的信息。)
另外,一般情况下不能从布隆过滤器中删除元素. 我们很容易想到把位数组变成整数数组,每插入一个元素相应的计数器加 1, 这样删除元素时将计数器减掉就可以了。然而要保证安全地删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面. 这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。

2.4布隆过滤器的使用场景

Google chrome 浏览器使用bloom filter识别恶意链接

 

检测垃圾邮件
假定我们存储一亿个电子邮件地址,我们先建立一个十六亿二进制(比特),即两亿字节的向量,然后将这十六亿个二进制全部设置为零。对于每一个电子邮件地址 X,我们用八个不同的随机数产生器(F1,F2, ...,F8) 产生八个信息指纹(f1, f2, ..., f8)。再用一个随机数产生器 G 把这八个信息指纹映射到 1 到十六亿中的八个自然数 g1, g2, ...,g8。现在我们把这八个位置的二进制全部设置为一。当我们对这一亿个 email 地址都进行这样的处理后。一个针对这些 email 地址的布隆过滤器就建成了。

 

A,B 两个文件,各存放 50 亿条 URL,每条 URL 占用 64 字节,内存限制是 4G,让你找出 A,B 文件共同的 URL。如果是三个乃至 n 个文件呢?

分析 :如果允许有一定的错误率,可以使用 Bloom filter,4G 内存大概可以表示 340 亿 bit。将其中一个文件中的 url 使用 Bloom filter 映射为这 340 亿 bit,然后挨个读取另外一个文件的 url,检查是否与 Bloom filter,如果是,那么该 url 应该是共同的 url(注意会有一定的错误率)。”

布隆过滤器--空间效率很高的数据结构

标签:

原文地址:http://www.cnblogs.com/dongdone/p/5725789.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!