标签:
codeforces394E
如果没有在凸多边形内一点的限制,答案肯定是
如果不在凸多边形内,那么目标点肯定在凸多边形边上,我们枚举每条边,在每条边上求出距离平方和最小的点,在这些点中求出最小的
我们可以发现固定一点计算这个平方和不要O(m)的时间,只要维护x坐标平方和,x坐标的和就可以O(1)计算,但是计算起来很鬼畜
其实最后答案就是凸多边形上,离这个最近的点。
#include<map> #include<stack> #include<queue> #include<cstdio> #include<string> #include<vector> #include<cstring> #include<complex> #include<iostream> #include<assert.h> #include<algorithm> using namespace std; #define inf 1001001001 #define infll 1001001001001001001LL #define FOR0(i,n) for(int (i)=0;(i)<(n);++(i)) #define FOR1(i,n) for(int (i)=1;(i)<=(n);++(i)) #define ll long long #define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl #define gmax(a,b) (a)=max((a),(b)) #define gmin(a,b) (a)=min((a),(b)) #define ios0 ios_base::sync_with_stdio(0) #define Ri register int #define gc getchar() #define il inline il int read(){ bool f=true; Ri x=0;char ch; while(!isdigit(ch=gc))if(ch==‘-‘)f=false; while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-‘0‘;ch=gc;} return f?x:-x; } #define gi read() #define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout); int n,m; #define eps 1e-6 struct point{ double x,y; il void rd(){ x=gi;y=gi; } point operator+(point a) {return (point){x+a.x,y+a.y};} point operator-(point a) {return (point){x-a.x,y-a.y};} point operator*(double a){return (point){x*a,y*a};} point operator/(double a){return (point){x/a,y/a};} double operator^(point a){return x*a.y-y*a.x;}//叉积 double operator&(point a){return x*a.x+y*a.y;}//点积 }p[100001],q[100001]; //q m个点的 多边形 //p n个目标点 double A,B,C; bool inside(point a,point b,point c){//chk if a between b-c double A=a-b&c-b; double B=c-b&c-b; double C=a-b^c-b; if (fabs(C)>eps) return 0; if (A>-eps&&A<B+eps) return 1; return 0; } int in_hull(point *b,point q) { int cnt=0; FOR1(i,m){ if(inside(q,b[i],b[i+1])) return 2; if((b[i]-q^b[i+1]-q)>eps) cnt++; } if (cnt==m||!cnt) return 1; return 0; } double dist(point a,point b){ return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y); } int main(){ FO(point); n=gi; FOR1(i,n)p[i].rd(); m=gi; FOR1(i,m)q[i].rd();q[0]=q[m]; double sx,sy,sx2,sy2;sx=sy=sx2=sy2=0; FOR1(i,n)sx+=p[i].x,sy+=p[i].y,sx2+=p[i].x*p[i].x,sy2+=p[i].y*p[i].y ; if(in_hull(q,(point){sx/n,sy/n})){ double ans=0.0; FOR1(i,n)ans+=dist((point){sx/n,sy/n},p[i]); printf("%.8lf",ans); //做到这里发现不会算不在多边形内的 }else{ sx*=2.0;sy*=2.0; double ans=infll; for(int i=0;i<m;i++){ int s=i,t=i+1; double dx=q[t].x-q[s].x,dy=q[t].y-q[s].y; double a=q[s].x,b=q[s].y; double A=dx*dx+dy*dy,B=2*a*dx+2*b*dy-sx/n*dx-sy/n*dy; double k=(-B)/(2*A); if(k<0) k=0; if(k>1) k=1; double x=a+dx*k,y=b+dy*k; double ss=n*(x-sx/(2.0*n))*(x-sx/(2.0*n))+sx2-(sx*sx)/(4.0*n)+n*(y-sy/(2.0*n))*(y-sy/(2.0*n))+sy2-(sy*sy)/(4.0*n); ans=min(ans,ss); } printf("%.8lf\n",ans); } //30/07/16 09:38如果WA了就是哪里nm pq反了 //30/07/16 09:52写完发现推的不对 // return 0; }
套用一位大佬的话,这是一道送命题
题目要求相当于是使每一行都与第一行相等或者完全相反
那么就大概有了思路
当n>k时。肯定有没被修改的行,我们枚举这个行在哪
当n<=k时,枚举第一列的状态,统计答案
#include<stack> #include<queue> #include<cstdio> #include<string> #include<vector> #include<cstring> #include<complex> #include<iostream> #include<assert.h> #include<algorithm> using namespace std; #define inf 1001001001 #define infll 1001001001001001001LL #define FOR0(i,n) for(int (i)=0;(i)<(n);++(i)) #define FOR1(i,n) for(int (i)=1;(i)<=(n);++(i)) #define ll long long #define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl #define gmax(a,b) (a)=max((a),(b)) #define gmin(a,b) (a)=min((a),(b)) #define ios0 ios_base::sync_with_stdio(0) #define Ri register int #define gc getchar() #define il inline il int read(){ bool f=true; Ri x=0;char ch; while(!isdigit(ch=gc))if(ch==‘-‘)f=false; while(isdigit(ch)){x=(x<<1)+(x<<3)+ch-‘0‘;ch=gc;} return f?x:-x; } #define gi read() #define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout); int n,m,k,map[101][101]; int main(){ FO(table); int T=gi; while(T--){ n=gi;m=gi;k=gi; FOR1(i,n)FOR1(j,m)map[i][j]=gi; if(n>k){ int res=inf,ans; FOR1(i,n){ ans=0; FOR1(j,n){ int cnt=0; if(i!=j) FOR1(k,m){ cnt+=map[i][k]^map[j][k]; } ans+=min(cnt,m-cnt); } gmin(res,ans); } printf("%d\n",res>k?-1:res); }else{ bool p[101];int ans=inf; FOR0(st,1<<n){ FOR1(i,n)p[i]=st&(1<<(i-1)); // FOR1(i,n)cout<<p[i];puts(""); int res=0; FOR1(i,n)res+=(p[i]^map[i][1]); FOR1(i,m){ int cnt=0; FOR1(j,n)cnt+=(p[j]^map[j][i]); res+=min(cnt,n-cnt); } // cout<<res<<endl; gmin(ans,res); } printf("%d\n",ans>k?-1:ans); } // puts("----------------------------"); } return 0; }
T3
还没做
标签:
原文地址:http://www.cnblogs.com/chouti/p/5733845.html