标签:
代码示例:
#include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <iostream> #include <stdio.h> #include <stdlib.h> using namespace cv; using namespace std; #define WINDOW_NAME "Shi-Tomasi角点检测" Mat src, gray; int maxCornerNum = 10; int maxTrackbarNum = 500; //滚动条回调函数 void cornersRefinement(int, void*){ Mat copy = src.clone(); if (maxCornerNum <= 1){ maxCornerNum = 1; } //角点检测参数准备 vector<Point2f> corners; double qualityLevel=0.01;//角点检测可接受的最小特征值 double minDistance = 10;//角点之间的最小距离 int blockSize = 3;//计算导数自相关矩阵时的指定的领域范围 double k = 0.04;//权重系数 //进行Shi-Tomasi角点检测 goodFeaturesToTrack(gray, corners, maxCornerNum, qualityLevel, minDistance, Mat(), blockSize, false, k); //像素级角点使用蓝色圆圈绘制 for (int i = 0; i < corners.size(); i++){ circle(copy, corners[i], 4, Scalar(255, 0, 0), 2, 8, 0); } /// 角点位置精准化参数 Size winSize = Size(5, 5); Size zeroZone = Size(-1, -1); TermCriteria criteria = TermCriteria( CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 40, //maxCount=40 0.001); //epsilon=0.001 /// 计算精准化后的角点位置 cornerSubPix(gray, corners, winSize, zeroZone, criteria); //亚像素级角点使用品红色圆圈绘制 for (int i = 0; i < corners.size(); i++){ circle(copy, corners[i], 4, Scalar(255, 0, 255), 2, 8, 0); // 输出角点坐标 cout << " [" << i << "] (" << corners[i].x << "," << corners[i].y << ")" << endl; } cout << endl; imshow(WINDOW_NAME, copy); } int main(){ src = imread("church.jpg", 1); cvtColor(src, gray, COLOR_BGR2GRAY); namedWindow(WINDOW_NAME, WINDOW_AUTOSIZE); createTrackbar("最大角点数", WINDOW_NAME, &maxCornerNum, maxTrackbarNum, cornersRefinement); imshow(WINDOW_NAME, src); cornersRefinement(0, 0); waitKey(0); return 0; }
效果:
标签:
原文地址:http://www.cnblogs.com/bluebean/p/5734241.html