码迷,mamicode.com
首页 > 其他好文 > 详细

九度oj 题目1207:质因数的个数

时间:2016-08-03 22:01:49      阅读:161      评论:0      收藏:0      [点我收藏+]

标签:

题目描述:
求正整数N(N>1)的质因数的个数。
相同的质因数需要重复计算。如120=2*2*2*3*5,共有5个质因数。
输入:

可能有多组测试数据,每组测试数据的输入是一个正整数N,(1<N<10^9)。

输出:

对于每组数据,输出N的质因数的个数。

样例输入:
120
样例输出:
5
提示:

注意:1不是N的质因数;若N为质数,N是N的质因数。

这个题着实费了我一番功夫,开始一直在纠结需要去判断每一个被除数是不是质数,需要一个个的去遍历质数才能得到答案,但每一次这样判断结果必然超时,于是思路就僵住了

后来参考别人代码,发现没必要去判断每一个数是不是质数,因为如果你把一个质数的因子全部都除掉之后,即使遍历每一个数,因为质因子已经被去掉了,那么包含那个质因子的合数必然不能被整除。

所以代码如下

 1 #include <cstdio>
 2 #include <cmath>
 3 
 4 int main()
 5 {
 6     int n;
 7     while(scanf("%d",&n) != EOF) {
 8         int ans = 0;
 9         int i = 2;
10         int q = sqrt(n);
11         while(n != 1) {
12             while(n % i == 0) {
13                 n = n/i;
14                 ans++;
15             }
16             i++;
17             if(i == q+1) {
18                 ans++;
19                 break;
20             }
21         }
22 
23         printf("%d\n",ans);
24     }
25     return 0;
26 }

一个小小的优化就是只遍历到sqrt(n)+1,此时如果还没有退出循环说明还有一个质因子,故ans++;

九度oj 题目1207:质因数的个数

标签:

原文地址:http://www.cnblogs.com/jasonJie/p/5734488.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!