标签:
题目链接:http://poj.org/problem?id=1061
就是找到满足 (X+mt)-(Y+nt) = Lk 的 t 和 k 即可
上式可化简为 (n-m)t + Lk = X-Y;满足ax+by=c的形式 所以我们可以用扩展欧几里德求t和k;
由于上式有解当且仅当 c % gcd(a, b) = 0;
#include <iostream> #include <stdio.h> #include <string.h> #include <string> #include <vector> #include <algorithm> #include <map> #include <queue> #include <stack> #include <math.h> using namespace std; #define met(a, b) memset(a, b, sizeof(a)) #define N 10053 #define INF 0x3f3f3f3f const int MOD = 1e9+7; typedef long long LL; LL gcd(LL a, LL b) { return b == 0 ? a : gcd(b, a%b); } void ex_gcd(LL a, LL b, LL &x, LL &y) { if(b == 0) { x = 1; y = 0; return ; } ex_gcd(b, a%b, x, y); LL t = x; x = y; y = t - a/b*y; } int main() { LL X, Y, L, n, m; while(scanf("%lld %lld %lld %lld %lld", &X, &Y, &m, &n, &L) != EOF) { LL a, b, x, y, c; a = n-m, b = L, c = X-Y; LL r = gcd(a, b); if(c%r) { puts("Impossible"); continue; } a = a/r; b = b/r; c = c/r; ///之所以让他们都除以r是为了让ab互质,然后结果就相当于是x和y的c倍; ex_gcd(a, b, x, y);///此时的a和b互质,求得就是ax+by=1;的解最终的解要*c; x = x*c; x = x % b;///要求的是最小的解,所以要对b求余; while(x <= 0) { x += b; } printf("%lld\n", x); } return 0; }
标签:
原文地址:http://www.cnblogs.com/zhengguiping--9876/p/5742604.html