标签:
1、收集预料
2、对预料进行去噪和分词
cat news_tensite_xml.dat | iconv -f gbk -t utf-8 -c | grep "<content>" > corpus.txt
#!/usr/bin/env python #-*- coding:utf-8 -*- import jieba import jieba.analyse import jieba.posseg as pseg def cut_words(sentence): #print sentence return " ".join(jieba.cut(sentence)).encode(‘utf-8‘) f = open("corpus.txt") target = open("resultbig.txt", ‘a+‘) print ‘open files‘ line = f.readlines(100000) num=0 while line: num+=1 curr = [] for oneline in line: #print(oneline) curr.append(oneline) ‘‘‘ seg_list = jieba.cut_for_search(s) words = pseg.cut(s) for word, flag in words: if flag != ‘x‘: print(word) for x, w in jieba.analyse.extract_tags(s, withWeight=True): print(‘%s %s‘ % (x, w)) ‘‘‘ after_cut = map(cut_words, curr) # print lin, #for words in after_cut: #print words target.writelines(after_cut) print ‘saved %s00000 articles‘% num line = f.readlines(100000) f.close() target.close()
3、运行word2vec输出每个词的向量
./word2vec -train resultbig.txt -output vectors.bin -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -binary 1
输出为vectors.bin
./distance vectors.bin
4、现在经过以上的熟悉,我们进入对关键词的聚类:
./word2vec -train resultbig.txt -output classes.txt -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -classes 500
然后按类别排序,再输入另一个命令:
sort classes.txt -k 2 -n > classes.sorted.txt
标签:
原文地址:http://www.cnblogs.com/xuanweizhang0413/p/5746343.html