码迷,mamicode.com
首页 > 其他好文 > 详细

整理一下rmq

时间:2016-08-09 20:31:41      阅读:94      评论:0      收藏:0      [点我收藏+]

标签:

rmq(int i,int j,int a)表示查询a数组i到j区间的内容中的最大/最小值核心部分为二分区间以及st预处理算法 

先说st预处理算法吧 

int dp[i][j];//表示以i开始 长度为2^j的区间里面元素的最大值

那么 dp[i][0] 就表示a[i]本身了 那么dp[i][j]怎么求呢? 我们将需要求的区间二分 2^k为区间二分后的长度 k的求法如下

int k=log(double(n+1))/log(2.0);//n为数组的长度  

那么 dp[i][j]=max(dp[i][j-1],dp[i+(1<<j)][j-1]); 这就是st的状态转移方程 也是区间的二分思想 既然我们dp[j]需要dp[j-1]的状态那么 我们写两层循环的时候j的值是顺序的 i的值按循序遍历即可

for(int j=1;j<=k;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++) dp[i][j]=max(dp[i][j-1],dp[i+(1<<j)][j-1]);
}

 

 

然后是总的rmq 

给个题目吧 hdu 3183

int k=log(double(n+1))/log(2.0);//n为数组的长度
int dp[i][j];//表示以i开始 长度为j的区间里面元素的最大值
for(int i=1;i<=n;i++) dp[i][0]=a[i];//dp的初始化问题
for(int j=1;j<=k;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++) dp[i][j]=max(dp[i][j-1],dp[i+(1<<j)][j-1]);
}
int rmq(int i,int j)
{
int k=log(double(i+j))/log(2.0);
return max(dp[i][k],dp[j-(1<<k)+1][k]);
}

整理一下rmq

标签:

原文地址:http://www.cnblogs.com/z1141000271/p/5754389.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!