码迷,mamicode.com
首页 > 其他好文 > 详细

BFS

时间:2016-08-12 11:37:59      阅读:123      评论:0      收藏:0      [点我收藏+]

标签:

广度优先搜索算法(Breadth-First-Search),又译作宽度优先搜索,或横向优先搜索,简称BFS,是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。广度优先搜索的实现一般采用open-closed表。

特性

 

空间复杂度

因为所有节点都必须被储存,因此BFS的空间复杂度为 O(|V| + |E|),其中 |V| 是节点的数目,而 |E| 是图中边的数目。注:另一种说法称BFS的空间复杂度为 O(BM),其中 B 是最大分支系数,而 M 是树的最长路径长度。由于对空间的大量需求,因此BFS并不适合解非常大的问题。

时间复杂度

最差情形下,BFS必须寻找所有到可能节点的所有路径,因此其时间复杂度为 O(|V| + |E|),其中 |V| 是节点的数目,而 |E| 是图中边的数目。

最佳解

若所有边的长度相等,广度优先搜索算法是最佳解——亦即它找到的第一个解,距离根节点的边数目一定最少;但对一般的图来说,BFS并不一定回传最佳解。这是因为当图形为加权图(亦即各边长度不同)时,BFS仍然回传从根节点开始,经过边数目最少的解;而这个解距离根节点的距离不一定最短。这个问题可以使用考虑各边权值,BFS的改良算法成本一致搜寻法en:uniform-cost search)来解决。然而,若非加权图形,则所有边的长度相等,BFS就能找到最近的最佳解。

广度优先搜索算法的应用

 

广度优先搜索算法能用来解决图论中的许多问题,例如:

  • 寻找图中所有连接元件(Connected Component)。一个连接元件是图中的最大相连子图。
  • 寻找连接元件中的所有节点。
  • 寻找非加权图中任两点的最短路径。
  • 测试一图是否为二分图
  • (Reverse) Cuthill–McKee算法

 

寻找连接元件

由起点开始,执行广度优先搜索算法后所经过的所有节点,即为包含起点的一个连接元件。

广度优先搜索,即BFS(Breadth First Search),是一种相当常用的图算法,其特点是:每次搜索指定点,并将其所有未访问过的邻近节点加入搜索队列,循环搜索过程直到队列为空。

        算法描述如下:

        (1)将起始节点放入队列尾部

         (2)While(队列不为空)

取得删除队列首节点Node

                          处理该节点Node

                          把Node的未处理相邻节点加入队列尾部

         使用该算法注意的问题:

        (1)使用该算法关键的数据结构为:队列,队列保证了广度渡优先,并且每个节点都被处理到

         (2)新加入的节点一般要是未处理过的,所以某些情况下最初要对所有节点进行标记

         (3)广度优先在实际使用时,很对情况已超出图论的范围,将新节点加入队列的条件不再局限于

相邻节点这个概念。例如,使用广度优先的网络爬虫在抓取网页时,会把一个链接指向的网页中的所有

URL加入队列供后续处理。

1.初始化数组dis,q

2.while(队列非空)
{
    1.st+=12.找相邻点
             若dis=-11.加入队列
                                2.修改dis
}

 

BFS

标签:

原文地址:http://www.cnblogs.com/zsh2016/p/5763987.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!